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Section 1

Structure of the course
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Structure

Lectures Mondays 10h15.
I will use the iPad and the blackboard.

I encourage you to ask questions along the way!

Moodle is our main platform.

Announcements.
Problem sheets (and solutions).
Links to relevant literature.
Link to Ed Discussions.
All questions about the course should be asked on Ed Discussions.

Slides and problem sheets will be uploaded every week.

Problem sheets will be made available on Mondays evenings.
Office hours with the teaching assistants: Monday 08h15-10h00.
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Exam

One graded homework. 20 % of the grade.

Written exam. 80 % of the grade.
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Goal

After the course, you should:

understand the meaning and utility of causal models,

understand and critically evaluate causal assumptions,

recognize whether a research question concerns causal effect,

design a study to answer a causal question,

be able to translate a research question to a formal causal estimand,

critically evaluate how causal inference is drawn in practice from data,

suggest and implement suitable causal methods in practice.
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Outline of the course

Study the theory for causal inference using counterfactuals,

See how this theory can be applied in practice,

and study its close link to the design of experiments.

Derive results for identification of causal parameters in different study
designs,both experiments and observational studies.

Causal graphs will play a key role here...

Translate practical questions to counterfactual parameters.

Look at examples
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Why is this useful?

Help you to gain scientific literacy

Understand bias in data. This is very important for data science

Pose good (causal) questions

Think about validation
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Section 2

Motivation

Mats Stensrud Causal Thinking Autumn 2022 8 / 386



Mats Stensrud Causal Thinking Autumn 2022 9 / 386



Warm-up example: Race and death penalty

Consider a famous data set that records the race of the defendants (D) in murder
cases in Florida between 1976 and 1987.1 The outcome is death penalty (Y ).

P(Y = 1 | D = w) = 53
53+430 = 0.11 > P(Y = 1 | D = b) = 15

15+176 = 0.08.
Now, consider death penalty conditional on the race of the victim (V ):

P(Y = 1 | D = w ,V = w) = 1
8 < P(Y = 1 | D = b,V = w) = 1

5 .
P(Y = 1 | D = w ,V = b) = 0 < P(Y = 1 | D = b,V = b) = 0.03.

1From Robin Evans, Oxford, see also Agresti, 2002
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Lessons learned from the warm-up example

Example of Simpson’s paradox (that you may be familiar with).
By the way, paradoxes don’t really exist...

Be careful about interpreting marginal and conditional
(in)dependencies.
We will carefully (and formally) study conditional (in)dependencies in
much detail in this course.

The reason why we believe that the conditional estimates are more
useful was due to a causal story.
There is no statistical method that can determine the causal story
from the data alone.

How would design a study to answer the causal question ”Are black
defendants more likely to get death penalty just because they are
black”?
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Admission to universities in the USA

GRE is a test that is required to get into many PhD-programs in the USA.

Unlike the death penalty example, now conditioning (on admission) leads to an
inappropriate comparison.
In this course, we will formalize how to design studies and analyse data to answer
causal questions.
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Suppose now that the units are individuals.

Table 1: Data from a study of A (an exposure) and Y (an outcome).

Y = 1 Y = 0
A = 0 10 90
A = 1 5 95

A = 1 is getting surgery, Y = 1 indicates survival after 1 year.

What does the table tell us now?

Could we infer that surgery reduces the risk of death?

Suppose that we say this was a randomized controlled trial, where A was
randomized?
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Let’s be explicit

Unfortunately, the scientific literature is plagued by studies in which the
causal question is not explicitly stated and the investigators’ unverifiable
assumptions are not declared. This casual attitude towards causal
inference has led to a great deal of confusion.
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Questions

Descriptive / predictive:

“Is this patient at high risk of developing complications during
surgery?”

Causal:

“Which type of anaesthetic should this patient receive to reduce the
risk of complications during surgery?”
“How does the amount of anaesthetic affect the risk of complications
during surgery?”
“What can be done to reduce the risk of complications during surgery
for an average / a particular type of patient?”
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Questions

Descriptive / predictive:

“Which type of client will buy which kind of product?”

Causal:

“Should advert be at the top or bottom of website to increase the
probability of viewing product?”
“How does the size of advert affect the probability of viewing product?”
“How can I get a client to buy my product?”
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Questions

Descriptive / predictive:

“Who is most likely to become long-term unemployed?”

Causal:

“Will a minimum wage legislation increase the unemployment rate of a
country?”
“What can be done to prevent someone from becoming unemployed?”
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What’s the question (Hernan et al, Chance, 2019)

How can women aged 60–80 years with stroke history be partitioned in
classes defined by their characteristics?
Hernan et al, Chance (2019)

This question is just about description.
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What’s the question

What is the probability of having a stroke next year for women with
certain characteristics?

This question is just about prediction.
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What’s the question

Will starting a statin reduce, on average, the risk of stroke in women with
certain characteristics?

This question is about causal effects, i.e. counterfactual prediction.
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3 tasks of data scientists

Description

Prediction

Counterfactual prediction (What would happen if...)
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Section 3

Prediction vs. causal inference
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Prediction and causal inference are different exercises

Prediction: Learn about Y after observing X = x .

Causal inference: Learn about Y after observing setting X = x .
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Pearl

Figure 1: Judea Pearl

“All the impressive achievements of deep learning amount to just curve fitting”
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Motivation

Albert Einstein (1953):

”Development of Western science is based on two great achieve-
ments: the invention of the formal logical system (in Euclidean
geometry) by the Greek philosophers, and the discovery of the
possibility to find out causal relationships by systematic experi-
ment (during the Renaissance)”.
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Experiments

Experiment (biology).

The randomized controlled trial (medicine).

A/B testing (tech industry).
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Scurvy - the first randomized trial?

Figure 2: James Lind, the surgeon, 1753.

https://www.bbc.com/news/uk-england-37320399
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Lind’s experimental set-up (simplified)

Recruit a bunch of sailors suffering from scurvy

Flip a coin for each sailor to determine course of action A

Heads: A = 1 (a lemon a day)
Tails: A = 0 (elixir of vitriol a.k.a sulphuric acid

For each sailor note down the outcomes denoted by Y : let’s say
Y = 1 is healthy and Y = 0 is sick with scurvy

This is an example of a simple randomized controlled trial (RCT),
also called A/B test.
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An aerial view of Rothamsted’s Broadbalk field, site of the
Broadbalk Wheat Experiment since 1843.
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In Silicon Valley they call it AB testing.

Mats Stensrud Causal Thinking Autumn 2022 30 / 386



Why bother?
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Why bother?

”Can (...) predict whether someone is at risk of an impending heart attack”,
Nature Biomedical Engineering, 2018

Decisions have to be made...
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What if...

Would starting treatment A prevent a heart attack?

Is Drug A better than Drug B?

Would the ad get more clicks if it were green instead of red?

Would the election campain increase the number of votes?

Would university education increase my future earnings?
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What if questions can be assessed in experiments

... but experiments are often not available because they are

impractical,

expensive,

time consuming,

unethical,

... and experiments may not be perfectly executed.

So, what do we do?

Emulate the experiment of interest from available observational data.
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some nuances?

https://becominghuman.ai/summary-of-the-alphago-paper-b55ce24d8a7c
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Section 4

Counterfactuals
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What would happen if...

Counterfactuals 1973:

Figure 3: David Lewis

https://en.wikipedia.org/w/index.php?curid=58724625

Mats Stensrud Causal Thinking Autumn 2022 37 / 386



Prediction and causal inference are different exercises

Prediction: Learn about Y after observing A = a.

Previously you have studied random variables conditional on
parameters,

Y ∼ Distribution{g(a)}.

Such (conditional) associations are not necessarily easy to interpret
(see the next example).

In this course, we will study causal problems, which are different
exercises.
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Two fundamental questions of causality (Pearl, 2009)

1 What empirical evidence is required for legitimate inference of
cause–effect relationships?

2 Given that we are willing to accept causal information about a
phenomenon, what inferences can we draw from such information,
and how?

In this course, we will consider mathematical tools for casting causal
questions or deriving causal answers.
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Section 5

Prediction vs. causal inference
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Prediction and causal inference are different exercises

Prediction: Learn about Y after observing A = a.
That is, infer properties of the law P that generated the observations Y .

Causal inference: Learn about Y after observing fixing A = a.
That is, infer properties of a counterfactual law, say, Pa,that would generate data

when a is fixed.
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What is a causal effect (in a simple setting)

Consider the following observed random variables:

A binary treatment A ∈ {0, 1}.
An outcome Y ∈ Y.
A vector of baseline covariates L ∈ L.

Define the counterfactual or potential outcome variables

Y a ∈ Y.
The outcome variable that would have been observed under the
treatment value a (the superscript denotes the counterfactual).

Often we will specifically instantiate a, i.e. set a to a value:

Y a=0 ∈ Y.
The outcome variable that would have been observed under the
treatment value a = 0.

Y a=1 ∈ Y.
The outcome variable that would have been observed under the
treatment value a = 1.
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Individual level causal effect

Definition (Individual level causal effect)

A causal effect for individual (unit) i is Y a=0
i vs Y a=1

i .
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Remarks on Y a=0 and Y a=1

The fundamental problem of causal inference:

Suppose A = 1. Then Y = Y a=1 is observed,
but Y a=0 is unobserved...

Suppose A = 0. Then Y = Y a=0 is observed,
but Y a=1 is unobserved...

The consequence is that individual level effect cannot be identified.2

2We will consider a possible exception later.
Mats Stensrud Causal Thinking Autumn 2022 44 / 386



Intervening is not the same as conditioning

Figure taken from Hernan, 2014, BMJ.
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Section 6

Lecture 2
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We make decisions based on ”what if” questions...

Some repetition from the first lecture.

Would starting treatment A prevent a heart attack?

Is Drug A better than Drug B?

Would the election campaign increase the number of votes?

Would university education increase my future earnings?

What would happen if I went to UNIGE instead of EPFL?
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Section 7

Defining a causal effect
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Counterfactuals a.k.a. potential outcomes

We will posit unobserved fixed potential or counterfactual outcomes3

for each unit4 under different treatments5

Hint: It is helpful to think about a counterfactual random variable as
a variable that does exist in this world, even before interventions
take place, but we are not able to observe it.

We will use superscripts to indicate that a random variable is
counterfactual. For example consider a random variable Y . A
counterfactual version Y g is the value Y would have had under an
intervention g (also called treatment regime or treatment strategy).

To get started, in the first lectures, we will consider some simple
interventions g which only fixes a binary treatment A to a value
a ∈ {0, 1}.

3I will use the terms ”counterfactuals” and ”potential outcomes”. interchangeably.
4I will use the terms ”unit”, ”subject” and ”individual” interchangeably.
5I will use the terms ”treatment” and ”exposure” interchangeably.
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Illustrative experiment (trial) on heart transplant.

Assess the effect of A ∈ {0, 1} (1 if heart transplant, 0 otherwise) on
Y ∈ {0, 1} (1 if dead, 0 otherwise)6.

6Miguel A Hernan and James M Robins. Causal inference: What if? CRC Boca
Raton, FL:, 2018.Mats Stensrud Causal Thinking Autumn 2022 50 / 386



Remark on counterfactuals

The definition of counterfactuals presupposes:

Y a = Y for every unit with A = a. In other words, Y A = Y .
”Consistency”. That is, Y = I (A = 0)Y a=0 + I (A = 1)Y a=1.

This ”consistency” assumption requires that

The intervention on A is well-defined.
No matter how unit i received treatment a, the outcome Y a is the
same.
The counterfactual outcome of unit i does not depend on the
treatment values of other units j , that is, ”no interference”.
Otherwise Y a

i is not well-defined.7

7This use of consistency is different from the use in estimation.
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More on consistency

An example of an ill-defined intervention:
Imagine A is a person’s body mass index (BMI). Setting the BMI to a
counterfactually different level can happen in many different ways - losing
weight by running, loss of appetite due to chain smoking, liposuction etc.
Depending on what way the intervention is implemented each time, we will
have very different health outcomes, i.e., re-running the experiment will
give inconsistent results.
Another example is infectious diseases
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The task of identification

Definition (Identification)

A parameter is said to be identified under a particular collection of
assumptions if it can be expressed uniquely as a function of the
distribution (law) of the observed variables.

That is, a parameter (estimand) is identified under a particular collection
of assumptions if these assumptions imply that the distribution of the
observed data is compatible with a single value of the parameter.
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Average causal effect

Definition (Average causal effect)

E(Y a=0) vs E(Y a=1).

Average causal effects can sometimes be identified from data (we will
study this extensively).

In most of this course, average causal effects will be our parameters
of interest, i.e. our target estimands.
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A more formal argument why randomisation is the gold
standard

In a randomised experiment, the treatment is assigned independently
of all other factors (e.g. by a coin flip or a random number generator).

In a randomised experiment one of the counterfactual outcomes Y a=0

or Y a=1 is unobserved.

However, randomisation ensures that it is random whether Y a=0 or
Y a=1 is unobserved, that is,

P(Y a = y | A = 1) = P(Y a = y | A = 0), ∀a ∈ {0, 1}, ∀y ∈ Y.

because the treatment assignment is independent of all other factors,
including the counterfactual outcomes (Y a). This conditional
independence is called exchangeability.
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Independence notation

Definition (Conditional independence)

X ⊥⊥ Y | Z ⇐⇒ FX ,Y |Z=z(x , y) = FX |Z=z(x) · FY |Z=z(y) ∀ x , y , z ,
where FX ,Y |Z=z(x , y) = P(X ≤ x ,Y ≤ y | Z = z).

We say that X and Y are conditionally independent given Z .
In other words, when Z = z is known, X provides no additional
information that allows us to predict Y .
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Exchangeability (re-visited)

In particular, we can re-write the condition from Slide 55,

P(Y a = y | A = 1) = P(Y a = y | A = 0),∀a ∈ {0, 1}, ∀y ∈ Y,

as
Y a ⊥⊥ A, ∀a ∈ {0, 1}.
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Effect contrasts

Additive effect: E(Y a=1)− E(Y a=0) = E(Y a=1 − Y a=0).
The additive effect is an average over individual level causal effects.
These are marginal quantities.

Relative effect: E(Y a=1)
E(Y a=0)

̸= E
(
Y a=1

Y a=0

)
.

The relative effect is not an average over individual level causal
effects.
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Causal effects in the population

More generally, we can consider population causal effects8:

Definition (Population causal effect)

A population causal effect can be defined as a contrast of any functional
of the marginal distributions of counterfactual outcomes under different
interventions.

For example VAR(Y a=1)− VAR(Y a=0).
Remember that we cannot identify VAR(Y a=1 − Y a=0).

From here on, I will often say causal effect when I talk about average
causal effect.

8Hernan and Robins, Causal inference: What if?
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Section 8

Randomisation
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Example conditions that ensure identification of causal
effects

Suppose that the following 3 conditions hold:

1 Y a ⊥⊥ A,∀a ∈ {0, 1} (exchangeability9).
2 P(A = a) > 0 ∀a ∈ {0, 1} (positivity10).
3 Y a = Y for every unit with A = a (consistency11).

that is, Y = I (A = 0)Y a=0 + I (A = 1)Y a=1.

From (1)-(3), E(Y a) = E(Y | A = a).
That is, we have identified E(Y a) as a functional of observed data.
Assumptions (1)-(3) are external to the data, but – importantly – they
hold by design in a perfectly executed experiment.
Just to be clear: The counterfactual independence Y a ⊥⊥ A,∀a ∈ {0, 1}
does NOT imply the factual independence Y ⊥⊥ A.

9Also called ignorability.
10Also called overlap. Note that this is a feature of the distribution, not the sample.
11Similar to the condition SUTVA: Stable Unit Treatment Value Assumption.
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Side note: relation to previous statistics courses

So far you have considered random variables, say, Y .

Y has a law – i.e. distribution – and you have inferred, i.e. estimated
features of this law: deterministic features of this random variable.

In the regression courses, you went further and looked at random
variables conditional on parameters. For example, linear regression is
the best (min squared error) linear approximation of Y (or of
E[Y | A]). where x is a parameter.

We consider the problem of identifying functionals f (Y a).
If a functional is identified, then we can use what you have learned so
far (and more) to estimate these functionals.

Mats Stensrud Causal Thinking Autumn 2022 64 / 386



Terminology

Remember the difference between the following terms:

Estimand (a parameter of interest, often a causal effect).

Estimator (an algorithm / function that can be applied to data).

Estimate (an output from applying the estimator to data).

We talk about bias of an estimator with respect to an estimand.
That is, the term bias (biased / unbiased) is defined with respect to an
estimand.
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Terminology
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A simple example of estimation of causal effects

Because E(Y a) = E(Y | A = a), the simple difference-in-means estimator,

δ̂ =
1

n1

∑
Ai=1

Yi −
1

n0

∑
Ai=0

Yi , na =
n∑

i=1

I (A = a),

is an unbiased estimator of the average (additive) causal effect of A in a
randomised experiment.
We will discuss estimation in more detail later in this course.
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Conditional randomisation

Let L ∈ {0, 1}
In the heart transplant example, let L = 1 if the individual is critically
ill, 0 otherwise.

Suppose A is conditionally randomised as a function of L such that
P(A = 1 | L = 0) = p0 and P(A = 1 | L = 1) = p1,
where p0 ̸= p1 and p0, p1 ∈ (0, 1).

How do we identify E(Y a)?
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Illustrative conditional experiment (trial) on heart
transplant

In this conditional randomised trial p0 = 0.5, p1 = 0.75
Compute an estimator based on the numbers above, and you will find that
Ê(Y a=1)− Ê(Y a=0) = 0.
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Identification in a conditional randomised experiment

A is conditionally randomised such that P(A = 1 | L = 0) = p0 and

P(A = 1 | L = 1) = p1, where p0 ̸= p1 and p0, p1 ∈ (0, 1).

Y a ⊥̸⊥ A,∀a ∈ {0, 1} (Exchangeability from Slide 62 may fail), but

1 Y a ⊥⊥ A | L,∀a ∈ {0, 1} (Exchangeability).
2 P(A = a | L = l) > 0 ∀a ∈ {0, 1}, ∀l s.t. P(L = l) > 0. (positivity).

3 Y a = Y for every unit with A = a (consistency).

When 1-3 hold, then

E(Y a) =
∑
l

E(Y | L = l ,A = a)P(L = l).

These conditions hold by design in a conditional randomised experiment.
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Identification in a conditional randomised experiment

Proof.

E(Y a) =
∑
l

E(Y a | L = l)P(L = l)

=
∑
l

E(Y a | L = l ,A = a)P(L = l) (exchangeability)

=
∑
l

E(Y | L = l ,A = a)P(L = l). (positivity and consistency)

We say that the 3rd line is an identification formula for E(Y a).
This is a special case of a so-called G-formula (or truncation formula)12.

12James M Robins. “A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker survivor effect”.
In: Mathematical modelling 7.9-12 (1986), pp. 1393–1512.
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Alternative weighted identification formula

E(Y a) =
∑
l

E(Y | L = l ,A = a) Pr(L = l)

= E
[
I (A = a)

π(A | L)
Y

]
.

where π(a | l) = P(A = a | L = l).
Why bother with equivalent expressions?
Because they motivate different estimators.
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Proof of IPW

Proof.

E
[
I (A = a)

π(A | L)
Y

]
=E

[
I (A = a)

P(A = a | L)
Y a

]
(consistency and positivity)

=E
[
E
{

I (A = a)

P(A = a | L)
Y a | L

}]
=E

{
E
[

I (A = a)

P(A = a | L)
| L
]
E [Y a | L]

}
(exchangeability)

=E {E [Y a | L]} = E [Y a] .
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Section 9

Causal inference from observational data
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Observational data

Definition (Observational data)

A sample from a population where the treatment (exposure) is not under
the control of the researcher.

That is, the treatment (exposure) of interest is not randomly assigned.
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Following Robins14, let’s be slightly more abstract

A dataset is a string of numbers.

These data represent empirical measurements (for example, for each
study subject, a series of treatments and outcomes).

In an analysis, calculations are performed on these numbers.

Based on the calculations, causal inference is drawn.

”Since the numerical strings and the computer algorithm applied to them
are well-defined mathematical objects, it would be important to provide
formal mathematical definitions for the English sentences expressing the
investigator’s causal inferences that agree well with our informal intuitive
understanding”13.

13James M Robins. “Addendum to “a new approach to causal inference in mortality
studies with a sustained exposure period—application to control of the healthy worker
survivor effect””. In: Computers & Mathematics with Applications 14.9-12 (1987),
pp. 923–945.

14Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”.
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Observational studies

In an observational study, treatment is not assigned according to
randomisation, but according to someone’s choice, for example the
patient, the costumer or the medical doctor.

People who choose to take treatment may be different from those
who choose not to take treatment, in the sense that they have
different risk of the outcome even before the decision is made.
Y a ⊥̸⊥ A,∀a ∈ {0, 1}.
The question is, can we find the characteristics L, which are
associated with treatment and the outcome such that
Y a ⊥⊥ A | L,∀a ∈ {0, 1}?
In other words, exchangeability does no longer hold by design, but can
we assume that it holds? What do we need to include in L for this to
hold?

Yet, humans have learned a lot from observations, and many scientific
studies are not experiments. We have learned about effects of
smoking, global warming, evolution, astrophysics etc.

Mats Stensrud Causal Thinking Autumn 2022 77 / 386



Same data, different story

Suppose the data (identical numbers to the slide 69) were from an
observational study (now A is not randomly assigned), where the doctors
tended to provide transplants (A = 1) to those with most severe disease
(L = 1)
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Example continues

Suppose first that L is the only outcome predictor unequally
distributed between those with A = 1 and A = 0. Then
Y a ⊥⊥ A | L,∀a ∈ {0, 1}.
Now, suppose that the doctors not only used L to make treatment
decisions, but also used smoking status, S ∈ {0, 1}, where smoking
status is an outcome predictor. Then, Y a ⊥̸⊥ A | L,∀a ∈ {0, 1}.
Thus, Y a ⊥⊥ A | L, ∀a ∈ {0, 1} may not hold in observational studies.

Suppose the investigators did not measure S . Can they use the
observed data to evaluate whether Y a ⊥̸⊥ A | L,∀a ∈ {0, 1} holds?
The answer is no.
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More on consistency

Consistency requires well-defined interventions.

How do we reason about exchangeability for a treatment A that is
ill-defined?

Suppose now that our exposure (treatment) is obesity A.

How can we identify common causes of obesity L and the outcome
mortality Y ? Difficult when we don’t even have a sufficiently
specified A

And does positivity hold? There can be some Ls (say, related to
exercise) for which nobody is obese.

The target trial where obesity is the exposure seems to involve
unreasonable interventions. How can we instantly make people
non-obese? By forcing them to exercise? By doing surgery? By diet?
All of these interventions may have different effects.
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Section 10

Effect modification and conditional effects
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Effect modification

Definition (Effect modification)

We say that V is a modifier of the effect of A on Y when the average
causal effect of A on Y varies across levels of V .

Since the average causal effect can be be defined on different scales, effect
modification depends on the scale.

Definition (Qualitative effect modification)

We say there is qualitative effect modification if the average causal effects
if there exist v , v ′ such that the effect given V = v are in the opposite
direction of effects given V = v ′.

Note that:

V may or may not be equal to L.

”Effect heterogeneity across strata of V ” is often used interchangeably with
”effect modification by V”.

Mats Stensrud Causal Thinking Autumn 2022 84 / 386



Why bother with effect modification?

So far we have focused on average causal effects.

However, effects will often be different in different subpopulations of
individuals (between men and women, Greek and Romans etc.).

It is often of practical interest to target future intervention to subsets
of the full population (If the treatment has a positive effect in men
and negative effect in women, we would like to give men and women
different treatments).

Some individuals will have different benefit of treatment than others
(towards precision medicine and personalised medicine...).

Later in the course, we will also see that this is important when we
are going to generalize (or transport) effects from a study to other
populations (for example, we have done an experiment in a selected
population, and now we want to make decisions in another
population. Therefore our question is how the intervention will work
in this other population).
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Illustrative experiment (trial) on heart transplant.

We may be interested in effects conditional on a baseline variable V .

Here, V = 1 if woman, V = 0 if man.
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Concrete example

Suppose that:

E(Y a=1 | V = 1) = 0.6 > E(Y a=0 | V = 1) = 0.4.

E(Y a=1 | V = 0) = 0.4 < E(Y a=0 | V = 0) = 0.6.

We conclude that there is qualitative effect modification by gender.
Treatment A = 1

increases mortality in women, but

reduces mortality in men.

Let P(V = 0) = 0.5. Then, the average causal effect
E(Y a=1)− E(Y a=0) = 0.
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Identification of effects modified by V .

For simplicity suppose that V and L are disjoint (different random
variables).

1 Y a ⊥⊥ A | L,V ,∀a ∈ {0, 1} (Exchangeability).
2 P(A = a | L = l ,V = v) > 0 ∀a ∈ {0, 1},∀l ∈ L,∀v ∈ V (Positivity).

3 Y a = Y for every unit with A = a (Consistency).

Mats Stensrud Causal Thinking Autumn 2022 88 / 386



How to identify effect modification

Strategy for identification:
1 Stratify by V .
2 Identify the effect within each level V = v .

For example, in a conditional randomised trial, an identification
formula for the average causal effect of A = a in the stratum defined
by V = v is

E(Y a | V = v) =
∑
l

E(Y | L = l ,V = v ,A = a)P(L = l | V = v).
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Romans vs Greeks.

Consider a conditional randomised study on Heart transplant, and let V indicate
whether the individual is Roman (V = 0) or Greek (V = 1)15

15Hernan and Robins, Causal inference: What if?
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Concrete example from Slide 86

Suppose that:

E(Y a=1) = 0.55 and E(Y a=0) = 0.40.

E(Y a=1 | V = 1) = 0.5 = E(Y a=0 | V = 1) = 0.5 (in Greeks).

E(Y a=1 | V = 0) = 0.6 > E(Y a=0 | V = 0) = 0.3. (in Romans)

We conclude that there is effect modification by nationality.
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Section 11

Interaction is different from effect modification
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Interaction requires multiple interventions

Consider two binary treatments A ∈ {0, 1} and E ∈ {0, 1}.
For example, chemotherapy and surgery.

For each individual we can imagine 4 potential outcomes,
that is, Y a=0,e=0, Y a=1,e=0, Y a=0,e=1 and Y a=1,e=1.

Definition (Additive interaction)

There is additive interaction if

E(Y a=0,e=0)− E(Y a=1,e=0) ̸= E(Y a=0,e=1)− E(Y a=1,e=1).

Additive interaction is symmetric wrt. A and E ,

E(Y a=0,e=0)− E(Y a=1,e=0) ̸= E(Y a=0,e=1)− E(Y a=1,e=1)

=⇒ E(Y a=0,e=0)− E(Y a=0,e=1) ̸= E(Y a=1,e=0)− E(Y a=1,e=1).

Remember that, unlike interactions, effect heterogeneity

did only involve interventions on A, not the modifier V .
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Multiplicative interaction

Definition (Multiplicative interaction)

There is multiplicative interaction if

E(Y a=0,e=0)

E(Y a=1,e=0)
̸= E(Y a=0,e=1)

E(Y a=1,e=1)
.
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Example: Interaction

A chemotherapy, E radiation therapy, Y being cured of cancer.

Interaction question: Is there interaction between the effect of
receiving both A chemotherapy and E radiation therapy?

E = 0 E = 1

A = 0 0.02 0.05
A = 1 0.04 0.10

Table 2: Experiment where A and E are randomised16

16Tyler J VanderWeele and Mirjam J Knol. “A tutorial on interaction”. In:
Epidemiologic Methods 3.1 (2014), pp. 33–72.
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Conceptual example

Let Y indicate being cured. There is additive interaction because

E(Y a=0,e=0)− E(Y a=1,e=0) ̸= E(Y a=0,e=1)− E(Y a=1,e=1)

0.02− 0.04 ̸= 0.05− 0.10,

but no multiplicative interaction because 0.02
0.04 = 0.5

0.10 .

Suppose we had 100 versions of drug E after A was randomly
assigned. Then, we would expect to cure 3 additional persons if we
used all of the drug supply among those with A = 0. However, we
would expect to cure 6 additional people if we used all the supply
among those with A = 1.
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Interaction and its relation to factorial experiments17

How would you conduct an experiment to evaluate interactions
between varialbes?

We need a factorial design.

Each treatment (A and E in our example) has different levels
(A,E ∈ {0, 1} in our example). A factorial design consists of an equal
number of replicates of all possible combinations of the levels of the
factors.
In our Example from Slide 95, there are 22 = 4 different combination of
treatment levels.

17David Roxbee Cox and Nancy Reid. The theory of the design of experiments. CRC
Press, 2000.
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Interaction summary

Just to say that there is an interaction on some scale is uninteresting;
all it means is that both exposures have some effect on the outcome.

Additive interaction is more relevant to public health.
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Plan for lecture 4

Target trials (briefly)

Structural Equation Models

Causal graphs

Bayesian networks
Link to structural equations
D-separation
Examples
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Section 12

Target trial
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The target trial

We have argued that contrast between average counterfactual
outcomes under different treatments are often of substantial interest.

We have also clarified that conducting an experiment guarantees
identification of a causal effect. However, conducting an experiment
is not always feasible.

For each causal effect of interest, we can conceptualize a
(hypothetical) randomised experiment to quantify it. This
hypothetical randomised experiment is called the target experiment
or target trial.

Being explicit about specifying the target trial forces us to be explicit
about the causal question of interest. We ask the question: “What
randomised experiment are you trying to emulate?”
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Specification of the target trial

To make a causal question practically interesting and useful, it is
important to clarify the following, which is part of the specification of the
target trial:

Target population (eligibility criteria).

Interventions (the treatment strategies).

Outcome (what is the outcome and when will the outcome be
measured)

Statistical analysis (application of estimators and their statistical
properties).

Also clarifies how the claims made can be falsified in the future (in
principle), by conducting the target trial. This fits with a positivist
(Popperian) view of science.
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Motivation

You have seen that conditional dependencies are hard to interpret.

Death penalty example
GRE example (you will see this again today)

We have also seen that (average) causal effects are identified by
design in experiments, but also can be identified under assumptions
(exchangeability, consistency and positivity) in an observational study.
However, reasoning about counterfactual (in)dependencies is at least
as hard as observed (in)dependencies.

We will now introduce graphs to clarify when:
1 Observed independencies can be interpreted causally.
2 Counterfactual independencies are plausible, which will allow

identification of causal effects.

Importantly, this allows us to study much more complex and realistic
settings than those we have considered so far.
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Section 13

Structural equations
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Structural equation model

Definition

A structural equation model (SEM) is a model that describes how values
are assigned to each variable in a system

Think about nature (God) assigning values to each variable in the system.
This describes a generative story of how the data came to be as follows.
Or think about each equation above represents a physical mechanism that
determines the value of the variable on the left (output) from values of the
variable on the right (inputs)
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We motivate structural equation models (SEMs) with an
example

Consider

L = fL(UL)

A = fA(L,UA)

Y = fY (A, L,UY ) = Y a=A,l=L =
∑
a,l

I (A = a, L = l)Y a,l (1)

Here UL,UA,UY are external unmeasured factors that are mutually
independent. Here, the generative story is as follows:

The value of L is determined as a function of the value of UL as given
by the function fL.

The value of A is determined as a function of the value of L,UA as
given by the function fA.

The value of Y is determined as a function of the value of L,A,UY as
given by the function fY .

Mats Stensrud Causal Thinking Autumn 2022 106 / 386



We will accompany the structural equations with a picture

Structural equation models are typically accompanied with a corresponding
picture known as a path diagram (as above): that is, a graph which makes
explicit the directionality of the underlying process.
For a more compact representation, unmeasured factors that do not
determine two or more variables in the system can be left out of the graph
(I will repeat this point in later slides, and make the notion more formal).
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SEM example (continued)

Consider the SEMM

L = fL(UL)

A = fA(L,UA)

Y = fY (A, L,UY ) (2)

and the graph G,

A YL

How doesM induce an observed data distribution over
P(L = l ,A = a,Y = y) and can this distribution be fully described in
some way by simply looking at the graph G?
And how about the distributions under interventions on A, that is,
P(L = l ,A = a,Y a = y)?
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Section 14

Graphs
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What is a graph?

Definition (Graph)

A graph G is a collection of

Nodes (vertices), V = {V1,V2, · · · ,Vm}.
Edges (ViVj) connecting some of the vertices.

We write (ViVj) to denote an edge that connects Vi and Vj .
A path is a sequence of edges of the form
⟨(V1,V2), (V2,V3), · · · , (Vk−1,Vk)⟩,
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What is a directed graph?

Definition (Directed Graph)

A directed graph is a graph with a set of nodes and arrows connecting
some of the nodes. A graph G is a collection of

Nodes (vertices) V = {V1,V2, · · · ,Vk}.
Directed edges connecting some of the nodes.

We write (ViVj)→ to denote a directed edge from Vi to Vj .
It is directed, because the graphs A directed path is a sequence of edges
of the form
⟨(V1,V2)→, (V2,V3)→, · · · , (Vk−1,Vk)→⟩,
A directed graph has a cycle if there exists a path
⟨(V1,V2)→, (V2,V3)→, · · · , (Vk−1,Vk)→, (Vk ,V1)→⟩.
A Directed Acyclic Graph is a directed graph with no cycles.
PS: Now the subscript does not longer indicate an individual. V1 is now a random
variable. From now on, I will use V1(ω) when I talk about the value for a particular
individual.
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Basic definitions

In a DAG G we define the following sets (parents, children, ancestors and
descendants):

paG (Vi ) ≡ {Vt : Vt → Vi exists in G}.

chG (Vi ) ≡ {Vt : Vi → Vt exists in G}.

anG (Vi ) ≡ {Vt : Vt → Va → · · · → Vj → Vi exists in G} ∪ Vi .

deG (Vi ) ≡ {Vt : Vi → Va → · · · → Vj → Vt exists in G}.

Further terminology:

A path where Va → Vi ← Vb is called a collider path, and here Vi is a
collider.

A path where Va ← Vi → Vb is called a fork.

A path is blocked if it contains a collider. Otherwise it is open.

A DAG is complete if there is an arrow between every pair of nodes.
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Topological order with respect to a graph

Definition (Topological order of a DAG)

The nodes V1,V2, . . . follow a topological order relative to a DAG G, if Vj

is not ancestor of Vi whenever j > i .

Note that topological orders are not necessarily unique, but in the DAG in
Figure 126 the only possible topological order is ⟨L,A,Y ⟩.

Mats Stensrud Causal Thinking Autumn 2022 113 / 386



Some preliminaries

Consider a study population Ω.

Let ω be an element (i.e. unit or individual) in Ω.

Note that we used subscript i to denote an individual in the first lecture, but
now the subscript just indicates a particular random variable, and we write
Vi (ω) when we consider the value for individual ω.

Consider a discrete random variable Vj .

Let Vj(ω) be the value of Vj in ω.

Let G be a DAG with nodes V = {V1,V2, · · · ,Vm}.
We use overlines to denote histories of variables, e.g.
v j ≡ (v1, v2, . . . , vj) ∈ V1 × V2 × · · · × Vm.
Let PAk = {Vj : Vj ∈ paG (Vk) }. A random variable

Let pak = {vj : Vj ∈ paG (Vk) } for a
v ≡ (v1, v2, . . . , vm) ∈ V1 × V2 × · · · × Vm A realisation of PAk .

From now on I will use p(vi | vj) to denote conditional densities
P(Vi = vi | Vj = vj).
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Non-parametric structural equation model (NSPEM) with
respect to a graph

There exist unknown functions f1, . . . , fm such that the observed
(”factual”) variables V1, . . . ,Vm satisfy

V1 = f1(U1)

V2 = f2(PA2,U2)

V3 = f3(PA3,U3)

...

Vm = fm(PAm,Um) (3)

where:

f0, f1, . . . are unknown deterministic functions.

PAi is the set of random variables that are parents of Vi .

U0,U1, . . . are random variables (”disturbances”or”errorterms”) (not
drawn in the graph). Sometimes called exogenous variables.
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NPSEM continues

For any treatment regime g = (gj1 , . . . , gjt ), the counterfactual variables
under g are generated by replacing the functions (fj1 , . . . , fjt ) with the
functions (gj1 , . . . , gjt ) , where t ≤ m. Below is an illustration. This is
called performing recursive substitution.

V g
1 = f1(U1)

V g
2 = f2(PA

g
2 ,U2)

...

V g+
j1

= gj1(PA
g
j1
,Uj1)

...

V g
m = fm(PA

g
m,Um) (4)

The superscript ”g” indicates that V g
i is a counterfactual variable (in other

words, potential outcome variable). The superscript ”g+” is given to the
variables on which we intervene. A NPSEM requires (3) and (4) to hold.
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Some remarks

Structural: fk not only generates observed (factual variables), but also
variables in other counterfactual worlds where we have done
interventions.

Counterfactual: The variable V g
j , j ∈ {0, . . . ,m} are called

counterfactual variables under treatment regime g .

A cause: A variable A is a cause of a variable Y if a change in A can
lead to a change in Y .
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Example: Point intervention

Let the regime g be defined by the intervention that sets V2 to a.

V a
1 = f1(U1)

V a+
1 = a

V a
3 = f3(PA

a
3,U3)

...

V a
m = fm(PA

a
m,Um) (5)

The superscript ”a” indicates that V a
i is a counterfactual variable (or

potential outcome variable)
where we have intervened to set a variable, here V1 (now with a
superscript a+) to a.
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Let’s interpret this model, specifically

Only the arguments to the structural equation determine the value of
a node.
That is, the value of Vj(ω) does not depend on any other unit ω′ in
the population.
(No interference)

Suppose that a unit ω has PAk(ω) = pak . Then, under any
intervention g that fixes PAg

k = pak we have that Vk(ω) = V g
k (ω).

(Consistency)

When PAk is known, the value of other variables V \ PAk do not
determine Vk . (Exclusion restriction).
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The causal inference part is an assumption about the
errors!

We must say something about the dependencies between the U’s to
encode causal relations.

Definition (Independent error model)

A NPSEM wrt. a DAG G such that U0, . . . ,UM are mutually independent.

This is Pearl’s NPSEM-IE18.

"IE" stands for independent errors.

NB: The independent error assumption is not really needed,

and can be relaxed in the more general FFRCISTG model19

The Uks represent all other variables that are used by nature, the decision
maker or anyone else to determine the value of Vk .

18Judea Pearl. Causality: Models, Reasoning and Inference 2nd Edition. Cambridge
University Press, 2000.

19Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”.
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Section 15

Causal graphs
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Let us start with some intuition

Suppose I were to explain what is going on in the experiment on heart
transplant for my friend who studied literature. I will draw intuitive
diagrams that can be formalised as causal graphs. We have previously
discussed:

Completely randomised experiment.

Conditional randomised experiment.

Observational study with smoking.

A Y
A YL A YL

S

This way of building causal stories using diagrams can be formalised by
graphs.
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Next step

In the previous slide, we just made these diagrams to encode
qualitative subject matter knowledge.

However, we shall see that the diagram can be formalised as a causal
directed acyclic graph, DAG, which encodes information about causal
and non-causal associations in a causal network: it allows us to
represent both association and causation in the same graph.
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Graphs

Some things you need to know about graphs

Graphs encode conditional independendcies

Graphs allow us to represent and organize assumptions and prior
knowledge.

Graphs make the assumptions transparent and explicit.
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What is the role of causal graphs?

Graphs help us to reason about independencies; that is, they help us reason
about whether certain exchangeability assumptions (conditional
independencies) hold.

This agrees with the mantra: ”draw your assumptions before your
conclusions”.20

Graphs help us to conceptualize problems and have intuitive appeal, also for
researchers who are illiterate in math.

However, the intuitive graphical representations have a mathematical
justification. Therefore you can translate the intuitive subject-matter
expertise (from doctors, economists, social scientists) to precise
mathematical statements.

Graphs allow us to encode causation and association.

20Hernan and Robins, Causal inference: What if?
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Example

We can now define the graph below as a causal DAG that describes the
conditional randomised trial on heart transplants,

A YL

where V1 = L,V2 = A,V3 = Y .
Here paG (Y ) = (L,A).
The graph is complete because there is an arrow between every pair of
nodes.
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What is a model

Definition (Statistical model)

A statistical model P is a collection of laws, P = {Pη : η ∈ Γ}.

Here Γ could be an infinite dimensional space. We will typically only
restrict ourselves to the space of models with finite variance.
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Bayesian network

Definition (Bayesian network)

A Bayesian Network with respect to a DAG G with nodes
V = (V1, . . . ,Vm) is a statistical model for the random vector V
specifying that V belongs to the collection of laws B satisfying the
Markovian factorisation

p(v) =
m∏
j=1

p(vj | paj)

Here, p(x | y) ≡ P(X = x | Y = y).
We say that the DAG G represents the Bayesian Network B.
For any law p in B, we say that p factors according to G,
or that p is represented by B.
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Causal DAG

Definition (Robins EPI 207)

A causal model associated with a DAG satisfies:

1 The lack of an arrow from node Vi to Vj can be interpreted as the absence
of a direct causal effect of Vi on Vj (relative to the other variables on the
graph).

2 Any variable is a cause of all its descendants. Equivalently, any variable is
caused by all its ancestors.

3 All common causes, even if unmeasured, of any pair of variables on the
graph, are themselves on the graph.

4 The Causal Markov Assumption (CMA): The causal DAG is a statistical
DAG, i.e., the distribution of V factors.

5 Because of the causal meaning of parents and descendants on a causal DAG,
the Causal Markov Assumption is equivalent to the statement:

Conditional on its direct causes (i.e., parents), a variable Vi is
independent of any variable it does not cause (i.e., any nondescendant).

Mats Stensrud Causal Thinking Autumn 2022 129 / 386



Absence of common causes in the DAG (point 3)

The arguments here are analogous to the motivating example for the
simple graph with A, L,Y and smoking S .

Remember that Uk represents all other variables that determines
(causes) Vk except the parents PAk .

Suppose that there exists a variable C that is a direct determinant of
Vk relative to the DAG (i.e. it does not only determine Vk through
variables in the DAG).

This means that Uk = mk(C ,U
∗
k ) for some function mk .

Suppose that C is also a direct determinant of a node j (but C is still
not in the DAG).

Thus, Uj = mj(C ,U
∗
j ) for some function mj .

Thus, Uk ⊥̸⊥ Uj .
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Factorisation of the NPSEM-IE (point 4)

Argument for Markov factorisation of causal model wrt. a DAG

p(v) =
m∏
j=1

p(vj | paj).

Proof.

Consider p(vj | v j−1) for any j ∈ {0, . . . ,m}. Here paj are the parents of vj .

p(vj | v j−1)

= p(fvj (PAj ,Uvj ) = vj | V j−1 = v j−1)

= p(fvj (paj ,Uvj ) = vj | V j−1 = v j−1)

= p(fvj (paj ,Uvj ) = vj | fvj−1(paj−1,Uvj−1) = vj−1, . . . , fv1(pa1,Uv1) = v1)

= p(fvj (PAj ,Uvj ) = vj | PAj = paj).
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No restrictions on p(v) imposed by the NPSEM-IE

The only restriction imposed on the observed law is the factorisation

p(v) =
m∏
j=1

p(vj | paj).

Proof.

Any further restriction must be a restriction on the form of p(vj | paj) for
any j ∈ {0, . . . ,m}. But

P(Vj = vj | PAj = paj) = P(fvj (paj ,Uvj ) = vj),

and we have not put any restrictions on the marginal density of Uvj .
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Factorisation of the nodes V

Lemma

If V follows a NPSEM-IE, then for any p(v j−1) with p(v j−1) > 0 we have that
p(vj | v j−1) = p(vj | paj) and therefore the joint density factorizes as

p(v) =
m∏
j=1

p(vj | paj).

This factorisation is the only restriction that the causal model implies on the law
of the observed data.

Thus, in our example from slide 137, the observed law factorizes as

p(v) = p(l , a′, y) = p(l)p(a′ | l)p(y | a′, l),

which means that here we put absolutely no restrictions on the law
p(v) ≡ P(V = v). You do not have to prove this.
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So we have an algorithm for creating causal graphs

We can create a causal DAG by:

1 Draw nodes for the exposure A and the outcome Y of interest.

Draw an arrow from A to Y .

2 If there exists a common cause C of A and Y , write C in the graph.

Draw arrows from C to A and from C to Y .
These common causes must be drawn, even if they are unmeasured.

3 If there exists a common cause C ′ of any pair W ,W ′ ∈ (C ,A,Y ), write C ′

in the graph.

Draw arrows from C ′ to W and from C ′ to W ′.

4 Continue in this way until there are no common causes...
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Markov equivalence classes

Definition (Markov equivalence class)

A Markov equivalence class is a set of DAGs that encode the same set of
conditional independencies.

Example of markov equivalent DAGs:

A YL A YL

Implication: We cannot use data alone to distinguish between causal
graphs.
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Linear structural equation example

We have not imposed any parametric assumptions so far. However, just
for the illustration, suppose we have a (partially) linear structural equation
model with two variables satisfying

A = f (UA)

Y = α+ βA+ UY (6)

This structural equation model implies that the individual level causal
effects is Y a=1 − Y a=0 = β!
We conclude that the linear equation model relies on extremely strong
assumptions that usually will be implausible. In this course, we will not
rely on such assumptions.
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Modified non-parametric example

A different SEMM

L = fL(UL)

A = fA(L,UA)

Y = fY (A,UY ) (7)

and the graph G,

A YL

Encodes that, changes in L leaves Y unchanged, provided that UY

and A remain constant.

Does this graph encode any restrictions on the distribution of
(L,A,Y )?
We will formally study what kind of restrictions the

structural models involve
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Section 16

Lecture 5
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Plan for today

D separation

Examples

The backdoor criterion
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Properties of conditional independence

Theorem (Graphoid axioms)

Let X ,Y ,Z ,W be random variables on a Cartesian product space.
Conditional independence satsifies

1 X ⊥⊥ Y | Z =⇒ Y ⊥⊥ X | Z (Symmetry)

2 X ⊥⊥ Y ,W | Z =⇒ X ⊥⊥ Y | Z (Decomposition)

3 X ⊥⊥ Y ,W | Z =⇒ X ⊥⊥W | Y ,Z (Weak union)

4 X ⊥⊥W | Y ,Z and X ⊥⊥ Y | Z =⇒ X ⊥⊥ Y ,W | Z (Contraction)

5 If p(x , y , z ,w) > 0, then X ⊥⊥W | Y ,Z and
X ⊥⊥ Y |W ,Z =⇒ X ⊥⊥ Y ,W | Z (Intersection)
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Proof of Graphoid axioms

I will not prove all of them here. I just state a brief proof of the first one
here.

Proof.
1 Symmetry follows simply because

X ⊥⊥ Y | Z ↔ p(x | z)p(y | z) = p(x , y | z)
= p(y | z)p(x | z)↔ Y ⊥⊥ X | Z .
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D separation of a path

Now we will study a beautiful graphical condition on G that immediately
tells if X ⊥⊥ Y | Z , where X ,Y ,Z are disjoint sets of nodes in V , is
implied by the Markov factorisation.

Definition (d-separation of a path)

A path r is d-separated by a set of nodes Z iff

1 r contains a chain Vi → Vj → Vk or a fork Vi ← Vj → Vk such that
Vj is in Z , or

2 r contains a collider Vi → Vj ← Vk such that Vj is not in Z and such
that no descendant of Vj is in Z .

Otherwise the path is d-connected.
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D separation of two nodes

Definition (d-separation of two nodes)

Nodes Vi and Vk are d-separated by a set of nodes Z if all trails between
Vi and Vk are d-separated by Z . We write d-separation as

(Vi ⊥⊥ Vk | Z )G .

If Vi and Vk are not d-separated, they are d-connected and we write

(Vi ⊥̸⊥ Vk | Z )G .

Theorem (Soundness of d-separation)

(Vi ⊥⊥ Vk | Z )G implies the statistical independence

Vi ⊥⊥ Vk | Z .

A consequence of soundness is that d-separation in G implies conditional
independence for any distribution that factorizes according to G.
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D-separation details and intuition

D-separation can be shown solely using the Graphoid axioms (but the
proof is tedious).

d-separation allows us to determine independencies of a distribution
from the structure of a statistical DAG that represents it.

Heuristically, two variables are d-separated (independent) if there is
no open path between them.
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D-separation and some questions in class

V0 V1 V2 V3
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Carrying a lighter A and the risk of lung cancer Y

A YL
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A gene A that causes heart disease L but not smoking Y ,
where C is taking aspirin (A cardiovascular drug)

A Y L

A Y L C
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Example: Birth weight paradox

Birth weight predicts infant mortality.

Investigators often stratify on birth weight when evaluating the effect
of maternal smoking on infant mortality.

Among infants with low birth weight, the mortality rate ratio for
smoke exposed infants versus non-exposed infants is 0.79 (95% CI:
0.76, 0.82).

This birth weight paradox has been a controversy for decades.

One suggestion is that the effect of maternal smoking is modified by
birth weight in such a way that smoking is beneficial for LBW babies.

Is this indeed the likely explanation?
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Example: Birth weight paradox

A

B

Y

U

A Smoking status of the mother

B Birth weight

U Unknown factor (e.g. genetic) causing low birth weight

Y Infant mortality

PS: for this graph to be more plausible, we should also add common
causes of A and Y .
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A clinical story

Suppose the graph on Slide 158 represents a study of HIV-positive
individuals to estimate the effect of an antiretroviral treatment A on 3-year
risk of death Y .

The unmeasured variable U ∈ {0, 1} indicates high level of
immunosuppression. Those with U = 1 have a greater risk of death.

Individuals who drop out from the study or are otherwise lost to follow-up
are censored (C = 1).

Individuals with U = 1 are more likely to be censored because the severity of
their disease prevents them from participating in the study.

The effect of U on censoring C is mediated by the presence of symptoms
(fever, weight loss, diarrhea, and so on), CD4 count, and viral load in
plasma, all included in L, which we suppose are measured.

Individuals receiving treatment are at a greater risk of experiencing side
effects, which could lead them to dropout, as represented by the arrow from
A to C . We have to restrict the analysis to individuals who remained
uncensored (C = 0) because those are the only ones in which Y can be
assessed.
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Berkson bias

A

L

Y

Q W

A Drink a glass of red wine a day.

Y Nausea

L Aspirin

Q Family history of cardiovascular disease

W Frequency of headache

Q: We measure Aspirin. Should we adjust for Aspirin in the analysis?
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Faithfulness and completeness of d-separation

Definition

A law P is faithful to a DAG G if for any disjoint set of nodes A,B,C we
have that A ⊥⊥ C | B under P implies (A ⊥⊥ C | B)G .

Theorem (Completeness of d-separation)

In a Bayesian Network with respect to a direct acyclic graph G there exists
a faithful law P.

We will not prove this important result21.
The completeness of faithfulness d-separation allows us to use d-separation to
represent the conditional independence structure of a multivariate distribution.
You can look at the graph, and read off all independencies that hold in the entire
class of distributions factorizing according to the DAG.

21Ann Becker, Dan Geiger, and Christopher Meek. “Perfect tree-like markovian
distributions”. In: arXiv preprint arXiv:1301.3834 (2013); Pearl, Causality: Models,
Reasoning and Inference 2nd Edition.
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The causal Markov assumption and faithfulness (intuition
and interpretation)

d-separation implies statistical independence, but does not allow one
to deduce that d-connection implies statistical dependence.

However, d-connected variables will be independent only if there is an
exact balancing of positive and negative causal effects.

Because such precise balancing of effects is highly unlikely to occur,
we shall henceforth generally assume that d-connected variables are
dependent.
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Backdoor adjustment

Definition (Backdoor path)

In a DAG G a backdoor path between two nodes Vi and Vj is a trail that
starts in Vi and ends in Vj ; and with initial edge being an arrow pointing
into Vi

Example backdoor path between Vi and Vj is: Vi ← Vk → Vj .
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Backdoor theorem

Theorem (Backdoor theorem wrt. to a DAG)

In a causal model represented by a DAG G let X , Y and Z be three sets of nodes
of G, each comprised of one or more nodes. Suppose that X contains no
descendants of Z and it blocks all back-door paths between any node in Z and
any node in Y : Suppose that g = (g1, . . . , gt) is a regime for Z = (Z1, . . . ,Zt)
(for some t ≥ 1) such that treatment assignments depend at most on X : Then,
for any x in the support of X such that
p(Z = g(x) | x) ≡ Pr(Z = g(x) | X = x) > 0; it holds that

P(Y g = y ,Z g+ = z ,X = x) =pg (y , x , z)

=p(y | x , z)I (g(x) = z)p(x)

=P(Y = y | Z = z ,X = x)I (g(x) = z)P(X = x),

and in particular,

P(Y g = y) =
∑
x

∑
z

p(y | x , z)I (g(x) = z)p(x).

Mats Stensrud Causal Thinking Autumn 2022 155 / 386



The backdoor theorem continues

See Pearl22 for proof (not required for the exam etc). This theorem is very
useful, because it allows us to identify causal effects even if certain nodes
in the graph are unmeasured. The last part of the theorem, after ”in
particular”, will be useful in the exercises of Lecture 5.

22Judea Pearl. “Causal diagrams for empirical research”. In: Biometrika 82.4 (1995),
pp. 669–688.

Mats Stensrud Causal Thinking Autumn 2022 156 / 386



Implication from the Backdoor theorem

It follows from the backdoor theorem that if Y a ⊥⊥ A | L then

P(Y a = y) =
∑
l

P(Y = y | L = l ,A = a)P(L = l).

However, we can also use it to identify causal effects in much more
complicated settings, which also involve unmeasured variables.
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Loss to follow-up example 1

A graph corresponding to the story from Slide 150

A C

L

U

Y

Factorisation according to the DAG with ordering ⟨A,U, L,C ,Y ⟩:

p(y , c , l , u, a) = p(y | u, a)p(c | l , a)p(l | u)p(u)p(a)

But how do we use this factorization to identify causal effects?
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Backdoor theorem in the example on loss to follow-up

Consider the example from Slide 158.

Note that

L blocks all backdoor paths between (A,C ) and Y .
Thus,

E(Y a,c=0) =
∑
l

E(Y | A = a,C = 0, L = l)P(L = l),

which can be estimated simply by standardisation:

Estimate E(Y | A = a,C = 0, L = l) by Ê(Y | A = a,C = 0, L = l),
Estimate P(L = l) empirically.
Standardise
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PS: Many causal questions are more difficult

Realistic questions are often more difficult. Consider for example:

when should we start a treatment?

How long should we continue treatment?

When to switch to different treatment?

What event should guide us to switch treatment?
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PS: Many causal questions are more difficult

Realistic questions are often more difficult. Consider for example:

when should we start a treatment?

How long should we continue treatment?

When to switch to different treatment?

What event should guide us to switch treatment?

We will discuss such questions later in the course
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Elephant in the room...

In a randomised study, the following graph is a causal DAG:

A Y

And we know that Y a ⊥⊥ A for a ∈ {0, 1}.
But the counterfactual independence cannot be read off from the graph!
This raises some questions:

Can we construct graphs to read off such counterfactual
independencies?

Can we read off factorisations of counterfactual laws from graphs?
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D-separation allows us to read off whether an association
is causal

We can graphically check – using d-separation – whether an observed
association between two variables A and B conditional on C is (solely) due
to a causal effect (i.e. that the association is unconfounded).

However, we also want to use graph to evaluate if we can identify
functionals of counterfactual variables, for example E(Y a). Now, the
elephant in the room is that there are no counterfactual variables on the
DAG! And we did want to reason about counterfactual independencies.
Thus, whereas we can evaluate independencies between factual variables in
a DAG, we cannot study counterfactual independencies.

Here we will study a recent and elegant23 transformation of the DAG – the
so-called Single World Intervention Graph (SWIG) – that does allow us to
read off independencies between factual and counterfactual variables.

23Thomas S Richardson and James M Robins. “Single world intervention graphs
(SWIGs): A unification of the counterfactual and graphical approaches to causality”. In:
Center for the Statistics and the Social Sciences, University of Washington Series.
Working Paper 128.30 (2013).
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Lecture 6

Static SWIGs

Dynamic SWIGs
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Section 17

Single World Intervention Graphs (SWIGs)
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Creation of SWIGs

The SWIG G(a) is created as follows (it can be conceived as a function
that transforms the original DAG into a new graph, which is still a DAG):

1 Draw the DAG that represents the causal model.
2 Split treatment variables into two nodes (indicated by semi-circles),

left and right.

The left node encodes the random variable treatment that would have
been observed in the absence of an intervention. This is called the
natural value of treatment node. Natural value of treatment nodes
should be treated as nodes of an ordinary DAG, i.e., ordinary random
variables.
The right node encodes the value of treatment under the intervention.
These nodes should be treated as constants, i.e. fixed nodes.

3 Re-label every non-manipulated descendant of an intervention node
with superscript: the superscripts indicate the counterfactual.

Use consistency to obtain graphs with minimal labelling, i.e. the
minimal set of counterfactuals in the superscript.
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Example: SWIG in a simple randomised trial

SWIG under treatment a = 1:

A Y A a = 1 Y a=1

We can read the independence Y a=1 ⊥⊥ A.
We also associate the new factorisation:

P(A = a′,Y a=1 = y) = P(A = a′)P(Y a=1 = y),

where we omit the fixed nodes from the conditioning set. Furthermore, we
make a modularity assumption (which would be implied by the
independent error assumption)

P(Y a=1 = y) = P(Y = y | A = 0),

which links the original factorisation to the original DAG factorisation.

Mats Stensrud Causal Thinking Autumn 2022 167 / 386



Single world

We can read the independence Y a=1 ⊥⊥ A from the SWIG for treatment a = 1:

A Y A a = 1 Y a=1

We can read the independence Y a=0 ⊥⊥ A from the SWIG for treatment a = 0:

A Y A a = 0 Y a=0

Why do we need both graphs? These are two different graphs that represent the
factorisation of different margins: P(A = a′,Y a=1 = y) and P(A = a′,Y a=0 = y).
None of the SWIGs encodes assumptions between counterfactuals from different
worlds Y a=0 and Y a=1. This is a feature, not a bug.
It has to do with identification. Node splitting preserves identification. If I
observe every node that I included in the original DAG, then the counterfactual
laws defined by the node splittings are also going to be identified: If
P(A = a′,Y = y) is identified, then P(A = a′,Y a=1 = y) is identified and so is
P(A = a′,Y a=0 = y), but not P(A = a′,Y a=1 = y ′,Y a=0 = y).
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Factorisation

Definition (SWIG factorisation)

The factorisation associated with a SWIG is

P(V a = v) =
∏
Vi∈V

P(V ai
i = vi | (PAG(a),i \ a) = q)

where q ⊆ pai ⊂ v and ai ⊆ a (ai are the elements of a that are ancestors
of Vi ).
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Modularity

Definition (Modularity)

The DAG pair (G, p(v)) and the SWIG pair (G(a), pa(v)) under an intervention
that sets A = (A0, . . . ,Ak) to a = (a0, . . . , ak) satisfy modularity for every Vi ∈ V
if

P(V ai
i = vi | (PAG(a),i \ a) = q)

=P(Vi = vi | (PAG,i \ A) = q, (PAG,i ∩ A) = aPAG,i∩A)

This definition looks like a mouthful, but it is conceptually quite easy to
understand. It bridges counterfactual densities to observable densities.
It is implied by the independent error assumption of the NPSEM-IE, and it holds
under a weaker causal model, the FFRCISTG24 (I have not shown this).

24Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.
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Causal models, factorisation and modularity

Theorem

A NPSEM-IE model (and the FFRCISTG model that includes the
NPSEM-IE model as a strict submodel) obeys factorisation and modularity.

We will not prove this result, but we will use it extensively.
In our saturated graph when we intervene to set a = 1, it implies that
P(Y a=1 = y) = P(Y = y | A = 1).
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D separation of a path (minimal modification in SWIGs)

A slight twist of D-separation for SWIGs

Definition (d-separation of a path)

A path r is d-separated by a set of nodes Z iff

1 r contains a chain Vi → Vj → Vk or a fork Vi ← Vj → Vk such that
Vj is in Z , or

2 r contains a collider Vi → Vj ← Vk such that Vj is not in Z and such
that no descendant of Vj is in Z .

If a path is not d-separated by Z and there is no fixed node on the path,
then the path is d-connected given Z .
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SWIT in a simple randomised trial

A SWIT is a SWIG template25, i.e. a graph valued function:

It takes a specific value a as input.

Returns a SWIG G (a).

SWIG G (0) represents p(A = a′,Y a=0 = y).

SWIG G (1) represents p(A = a′,Y a=1 = y).

A Y A a Y a

The SWIT represents both the SWIGs from the previous slide. Hereafter
we will use SWITs for simplicity, most of the time.

25Note that I am sometimes sloppy and use the word SWIG when I formally talk
about a SWIT.
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SWIG in a conditional randomised experiment

L A Y A aL Y a

P(Y a = y) =
∑
l

P(Y a = y | L = l)P(L = l) factorization

=
∑
l

P(Y = y | A = a, L = l)P(L = l). modularity
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SWIG in an experiment with loss to follow-up (C)

A is treatment, C is censoring. The counterfactual outcome Y a,c=0 is the
outcome if we kept every individual uncensored (c = 0) under treatment a.

A C

L

Y

A a C a c = 0

L

Y a,c=0

Message: collecting L is good, even in a randomised experiment...
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and A denotes taking treatment.
Here, the counterfactual in the SWIG is the outcome had the patient taken
treatment a. The lack of an arrow from R to Y a encodes the assumption
that randomisation only causes the outcome through the treatment A.

R A

L

Y A a

L

Y aR
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and Ak denotes taking treatment at
time k ∈ {0, 1}.

R A0 A1

L

Y

A0 a0 Aa0
1 a1

L

Y a0,a1R

Lhy no arrow from R to Y ?
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and Ak denotes taking treatment at
time k ∈ {0, 1}.

R A0 A1

L0 L1

Y

A0 a0 Aa0
1 a1

L0

Y a0,a1

La01

R
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SWIG and independencies

These graphs illustrate minimal labelling (La01 = L1). The first graph is not
minimally labelled, but encodes the same information as the second graph which
is minimally labelled.

A0 a0 Aa0
1 a1

H

Y a0,a1La01

A0 a0 Aa0
1 a1

H

Y a0,a1L1
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SWIG criterion for identification of effects

Consider the observed random variables AK , LK ,Y .

Definition (g-formula)

The g-formula for the marginal of Y ≡ YK under treatment assignment
a = aK = (a0, . . . , aK ) is defined as

ba(y) =
∑
lK

p(y | lK , aK )
K∏
j=0

p(lj | l j−1, aj−1),

where lk = (l0, . . . , lk), k ≤ K , are instantiations of observed variables
Lk = (L0, . . . , Lk), k ≤ K .

We define variables indexed by subscript ”−1”, e.g. L−1, to be empty.
26

26Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”;
Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality”.
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Sufficient condition for identification

Theorem (Identification of static regimes)

Consider an intervention that sets a = aK = (a0, . . . , aK ). Under positivity and
consistency,

P(Y a = y) = ba(y)

if and only if for k ∈ {0, . . . ,K}

Y a ⊥⊥ I (Ak = ak) | L0, . . . , Lk ,A0 = a0, . . . ,Ak−1 = ak−1.

This theorem follows from Robins27 and Richardson and Robins28, and is closely related
to the backdoor theorem of Pearl29.
The theorem establishes when we can use the g-formula to identify causal effects.

27Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”.

28Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.

29Pearl, “Causal diagrams for empirical research”.
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Proof of the ”if” part in a simple case

Consider the case with two treatments (A0,A1) and a binary outcome
Y ∈ {0, 1}. Suppose that Y a0,a1 ⊥⊥ A0 and Y a0,a1 ⊥⊥ A1 | L1,A0 = a0

Proof.

E(Y a0,a1) =E(Y a0,a1 | A0 = a0) exchangeability

=
∑
l1

E(Y a0,a1 | L1 = l1,A0 = a0)p(l1 | a0)

=
∑
l1

E(Y a0,a1 | A1 = a1, L1 = l1,A0 = a0)p(l1 | a0) exchangeability

=
∑
l1

E(Y | A1 = a1, L1 = l1,A0 = a0)p(l1 | a0) consistency, positivity
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Comments to the g-formula

The independence condition in the identification theorem cannot be
read directly off of a SWIG. However, on the next slide we see how the
identification condition is implied by an independence in the SWIG.

Importantly, the g-formula allows identification in the presence of
unmeasured variables.
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Reading off independencies in SWIGs

Let H be a hidden (unmeasured) variable

A0 a0 Aa0
1 a1

H

Y a0,a1La01

We can read off Y a0,a1 ⊥⊥ Aa0
1 | L

a0
1 ,A0.

However, what we needed for using the g-formula is the independence
Y a0,a1 ⊥⊥ A1 | L1,A0 = a0.
Use consistency: Aa0

1 | L
a0
1 ,A0 = a0 is equal to A1 | L1,A0 = a0, i.e.,

Y a0,a1 ⊥⊥ Aa0
1 | L

a0
1 ,A0 =⇒ Y a0,a1 ⊥⊥ A1 | L1,A0 = a0.
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Using the identification theorem

Thus, we can identify the expected counterfactual outcome under the
intervention that sets A0 = a0 and A1 = a1 in the graph in Slide 184 as

E(Y a0,a1) =
∑
l1

E(Y | A1 = a1, L1 = l1,A0 = a0)P(L1 = l1 | A0 = a0).

Note that we have identified the counterfactual as a function of only the
observed variables in the graph, even if there is a hidden variable H in the
graph.
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Additional SWIG

A0 a0 Aa0
1 a1

H1 H2

Y a0,a1La01

What is the g-formula? Compare to Figure 184. Indeed, the g-formula is
just a function of observed data distributions, but here it does not identify
the causal estimand because the identification conditions are violated.
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Some insights

We have studied identification from an ”all or nothing” perspective.

We will later look at sensitivity analyses and bounds.

The identification assumptions we have studied are non-parametric
(PS: I consider this to be a feature, not a bug). We have not
considered other assumptions that also can be used to justify
identification, for example

monotone effects.
no effect modification.

We have not learned the graphical structure. On the other hand, we
have learned what we can infer from a given graphical structure;
heuristically, we encode what we know and believe in the graph, and
then we deduce what we can learn from this knowledge and
assupmtions.

Learning the graphical structure itself from data is a very ambitious
task.
In principle, the causal structure could be learned by doing a large
amount of experiments (I am not discussing this in more detail here).
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Berkson bias

A

L

Y

Q W

A Drink a glass of red wine a day.

Y Nausea

L Aspirin

Q Family history of cardiovascular disease

W Frequency of headache

Q: We measure Aspirin. Should we adjust for Aspirin in the analysis?
Draw the SWIG...
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Section 18

Dynamic regimes
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Dynamic regimes

Definition (Dynamic regime)

A dynamic regime g = (g0, . . . , gk), where gk : (Ak−1, Lk) 7→ Ak , is a
policy that assigns treatment (possibly at multiple time points) based on
the measured history (Ak−1, Lk).

We will restrict ourselves to settings where

gk : (Lk) 7→ Ak

.
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Dynamic regime SWIGs

Definition (d-SWIG from Robins and Richardson)

Given a template G(a) and a dynamic regime g for a, the d-SWIG G(g) is
defined by applying the following transformation:

Replace each fixed node aj with a random node Ag+
j that inherits

children from aj . Include dashed directed edges from every variable
that is an input to the function gi that determines the variable Ag+

i .

Each random node Vi that is a descendant of at least one variable
Ag+
i is relabeled as V g

i .
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Time-varying exposures (treatments) are frequent

Examples:

Smoking status, which depends on other events in life.

A therapeutic drug, for which the dose is adjusted according to the
response over time (patients take the drug every day, every week etc)

Cancer screening, which e.g. depends on previous diagnostic tests.

Surgical interventions (e.g. transplants) are given at a certain time
after the diagnosis.

Expression of genes.
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Running example: HIV

Consider a 5-year follow-up study of individuals infected with the human
immunodeficiency virus (HIV)30.

Ak takes value 1 if the individual receives antiretroviral therapy in
month k , and 0 otherwise. Define A−1 = 0.

Suppose Y measures health status at 5 years of follow-up.

So far we have considered deterministic treatment rules, for example
”always treat”, where the outcome of interest is Y a=1 vs ”never
treat”, where the outcome of interest is Y a=0.
When A ≡ AK , we can define 2K such static regimes...

However, often we want to make dynamic treatment decisions.

Let Lk ∈ {0, 1} be an indicator of low CD4 cell count measured at
month k .

Depending on the value of Lk , we may argue that it is good or bad to
start treatment at time k .

30Hernan and Robins, Causal inference: What if?
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Example of Dynamic Regime

A simple example of a dynamic regime g for setting with two treatments is

Ag+
0 = a0.

Ag+
1 = La01

In the HIV example this would mean that you are treated at time 1 if
the CD4 cell count is low at that time.
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Static vs dynamic

A0 a0 Aa0
1 a1

La0

Y a0,a1

H

Y a0,a1 ⊥⊥ A0 and Y a0,a1 ⊥⊥ Aa0
1 | L

a0
0 ,A0.

A0 a0 Ag
1 Ag+

1

La0

Y g

H

Y g ⊥⊥ A0 and Y g ⊥⊥ Aa0
1 | L

a0
0 ,A0.

Y g ⊥⊥ A0 and, using the graph and consistency, Y g ⊥⊥ A1 | L0,A0 = a0.
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Sufficient condition for identification (Repetition of
previous slide)

Theorem (Identification of static regimes)

Consider an intervention that sets a = aK = (a0, . . . , aK ). Under positivity
and consistency,

P(Y a = y) = ba(y)

if and only if for k ∈ {0, . . . ,K}

Y a ⊥⊥ I (Ak = ak) | L0, . . . , Lk ,A0 = a0, . . . ,Ak−1 = ak−1.

This theorem follows from Robins31 and Richardson and Robins32, and is closely related
to the backdoor theorem of Pearl33; Indeed, we can just call it ”The SWIG backdoor
criterion”
The theorem establishes when we can use the g-formula to identify causal effects.

31Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”.

32Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.

33Pearl, “Causal diagrams for empirical research”.
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Identification results for dynamic regimes

We can use the same identification conditions (independencies in
Slide 181) as for static regimes, only if Ag+

k is not a function of Ag+
j

for j < k . However, we need to use the extended g-formula as the
identification formula (as defined in Slide 201).

if Ag+
k is a function of Ag+

j for any j < k, we need slightly stronger
conditions (we are not presenting them now). This is e.g. the case in
the graph in Slide 199 (due to the red arrow).
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Does the identification conditions hold in the following
Dynamic SWIG?

A0 a0 Ag
1 Ag+

1

La01

Y g

H1H0

Y g ̸⊥⊥ A0 because A0 ← H0 → La01 → Ag+
1 → Y g is open. However, we

would have identification in a static SWIG where Ag+
1 ≡ a1. So, in that

sense, dynamic regimes require stronger conditions for identification, even
though the independencies are stated in the same way.
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HIV SWIG

A (busy) graph illustrating a conditional RCT, where H0 and H1 are
hidden variables (e.g. the actual immune status of the patient).

A0 Ag+
0 Ag

1 Ag+
1

L0

Y g

Lg1

H0 H1
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Consistency for dynamic regimes

Now we generalize the consistency conditions such that it is valid for
time-varying dynamic regimes. Indeed, it can simply be expressed as

if AK = A
g+
K , then Y g = Y .

A special case for static regimes is if AK = aK , then Y aK = Y .
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Marginal extended g-formula under interventions that

depend on Lk

Suppose that gk is only a function of Lk . Then, the marginal extended g-formula
is defined as the following function of observed random variables AK , Lk ,Y .

Definition (Marginal extended g-formula)

bg (y) =
∑
aK

∑
lK

p(y | lK , aK )
K∏
j=0

p(lj | l j−1, aj−1)p
g (aj | l j),

where lk = (l0, . . . , lk), k ≤ K , are instantiations of observed variables and

pg (aj | l j) is the density of Ag+
k given L

g

k , which is determined by gk .

We let variables indexed by subscript −1, e.g. L−1 be empty.
Note that pg (ak | lk) is a known function. It is determined by the investigator
(even if it has a superscript g). If gk is a deterministic function of lk , then

pg (a′k | lk) =

{
1 if a′k = gk(lk),

0 if a′k ̸= gk(lk), k ∈ {0, . . . ,K}.
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Relation to the g-formula for static regimes

The dynamic extended g-formula density generalizes the marginal
g-formula from slide 181, because for a static intervention that sets
a = (a0, . . . , aK ) we have that for k ∈ {0, . . . ,K},

pg (a′k | lk) =

{
1 if a′k = ak ,

0 if a′k ̸= ak .
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HIV example

Consider the example in Slide 193, and suppose the following SWIG:

A0 a0 Aa0
1 Ag+

1

La01

Y g

H1

let the dynamic regime g be

Ag+
0 = a0.

Ag+
1 = La01

That is, a patient is treated at time 1 if the CD4 cell count is low at that
time.
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HIV Example cont.

Then the g-formula reduces to

bg (y)

=
∑
a′1,l1

p(y | A1 = a′1, L1 = l1,A0 = a′0)I (a
′
1 = l1)p(l1 | A0 = a0)I (a

′
0 = a0),

=
∑
l1

p(y | A1 = l1, L1 = l1,A0 = a0)p(l1 | A0 = a0).

because

pg (a′1 | l1) =

{
1 if a′1 = l1,

0 if a′1 ̸= l1.
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SWIG criterion to identify effects of dynamic regimes (you
do not need to understand the extended g-formula density)

Definition (extended g-formula density)

The dynamic extended g-formula density for Y ≡ YK under treatment regime g
given by the functions g0, . . . , gK that determine AK = (A0, . . . ,AK ) is

f g (y , lK , aK , a
+
K ) = p(y | lK , a+K )

K∏
j=0

p(lj , aj | l j−1, a
+
j−1)

K∏
t=0

pg (a+t | paAg+
t
),

where lk = (l0, . . . , lk), k ≤ K , are observed variables, pg (a+t | paAg+
t
) is the

density of Ag+
t given PAAg+

t
is the input to gt , for t ∈ {0,K}.

James M Robins. “A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker survivor effect”.
In: Mathematical modelling 7.9-12 (1986), pp. 1393–1512; Thomas S Richardson and
James M Robins. “Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality”. In: Center for the Statistics and
the Social Sciences, University of Washington Series. Working Paper 128.30 (2013).

Mats Stensrud Causal Thinking Autumn 2022 206 / 386



Section 19

A brief note on estimation (learning)
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Lecture 8: Plan for estimation (learning)

Review foundations of estimation theory that are relevant to causal
inference.

Statistical models (Parametric and non-parametric).
Correctly specified models.

Motivate why we need to study certain estimation problems.

Convergence of conditional means.

Introduce some commonly used estimators: Regression estimators and
inverse probability weighted estimators.

Brief summary of linear models.
Logistic regression models.
M-estimators.
Link this back to counterfactuals.
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My take on data science

1 Start with the question.
(Design your target trial)

2 Formalize the question in mathematical language.
(Define your estimand)

3 Display the assumptions that are needed to identify your estimand.
(Present your identifiability conditions)

4 Compute estimates of your estimands from your data.
(Do your estimation)

=⇒ we never start the process by considering a regression model
(linear, logistic, Cox model, neural net, random forest, ..., whatever).
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Finite sample inference: Where does randomness come
from?

We will mostly consider superpopulation inference, where the
randomness comes from the fact that we have a random draw from
the superpopulation.

However, in a randomised trial, we do not necessarily need to consider
a superpopulation at all.

In these (simple) settings, we can do finite sample inference.

Yet, we shall see that to generalize the results outside of the study –
which is really what researcher would like to do in most settings – it is
necessary to consider large sample extensions (which fundamentally
ends up being superpopulations).
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Superpopulation inference and finite sample inference

We will most often suppose that our study population is sampled at random
from an (essentially) infinite superpopulation, sometimes referred to as the
target population.

Broadly speaking, we aimed to generalize our results to this superpopulation.

It is possible to take a different point of view in randomised trials, often
called ”design-based inference”, which we will study now. This does not
require the consideration of a superpopulation at all.34

Definition (Design-based inference)

Inference is drawn from a finite population, where the potential outcomes of the
experimental units are fixed and the randomness comes solely from the treatment
assignment.

34However, to generalize results from finite samples to settings outside of the
experiment – even if we start in the design based setting – it is necessary to rely on
superpopulation inference. Thus, if we are interested in using the results from the trials
for decisions (or rigorous reasoning more broadly) outside of the experiment, it seems
that we need to rely on superpopulation inference anyway.
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Superpopulation inference and finite sample inference

We will most often suppose that our study population is sampled at random
from an (essentially) infinite superpopulation, sometimes referred to as the
target population.

Broadly speaking, we aimed to generalize our results to this superpopulation.

It is possible to take a different point of view in randomised trials, often
called ”design-based inference”, which we will study now. This does not
require the consideration of a superpopulation at all.35

Definition (Design-based inference)

Inference is drawn from a finite population, where the potential outcomes of the
experimental units are fixed and the randomness comes solely from the treatment
assignment.

35However, to generalize results from finite samples to settings outside of the
experiment – even if we start in the design based setting – it is necessary to rely on
superpopulation inference. Thus, if we are interested in using the results from the trials
for decisions (or rigorous reasoning more broadly) outside of the experiment, it seems
that we need to rely on superpopulation inference anyway.
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Fisher Randomisation inference

Key idea: do inference based solely on the assignment mechanism.

The counterfactuals Y a=1
i ,Y a=0

i are considered to be fixed variables.

All the randomness comes from the random assignment of A.

Fisher’s aim was to test the sharp null hypothesis, using Fisher exact
test.

The idea is basically a stochastic proof by contradiction...

Fisher’s null hypothesis is H0 : Y
a=1
i ≡ Y a=0

i for all i ∈ {1, 2, . . . , n}.
In words, the treatment has no effect of the outcomes in no individual.
Under the null hypothesis (but of course not under the alternative)
Y a=1
i = Y a=0

i = Yi .

This null hypothesis is called a sharp null hypothesis because it is
specified such that it allows the researcher to fill in a hypothetical
value for each unit’s missing counterfactual outcome

Mats Stensrud Causal Thinking Autumn 2022 213 / 386



Fisher’s exact test: A test of individual effects

Define the sharp null hypothesis H0 : Y
a=1
i = Y a=0

i for all i ∈ {1, 2, . . . , n}.

Define a test statistic36, e.g. Sdiff = 1
n1

∑
i :Ai=1 Yi − 1

n0

∑
i :Ai=0 Yi .

Let s∗ be an observed test statistic. Then P(S ≥ s∗) is a p-value, where the
probability is under the law that describes the null hypothesis.

Fisher suggested an exact test.

The idea is to ask the following question: How unusual or extreme is
the observed statistic (say, absolute difference), assuming that the null
hypothesis is true?

Intuitively, we want to have power against alternative hypotheses, but this is
somehow complicated because there are many alternative hypotheses. It
seems reasonable to have good power against alternative hypotheses that
are substantively most interesting.

36A statistic is a known, real-valued function of the data (here,
Y1,A1, L1, . . . ,Yn,An, Ln)

Mats Stensrud Causal Thinking Autumn 2022 214 / 386



*Examples of statistics

Averages (like above)

Trimmed means

Quantiles (medians)

T-statistics

Rank statistics (perhaps good when heavy-tailed distributions)

One example is the Kolmogorov-Smirnov Statistic. Define, the empirical
distributions

F̂a=1(y) =
1

n1

∑
i :Ai=1

I (Yi ≤ y) F̂a=0(y) =
1

n0

∑
i :Ai=1

I (Yi ≤ y).

The Kolmogorov-Smirnov Statistic is

Sks = sup
y
|F̂a=1(y)− F̂a=0(y)| = max

i
|F̂a=1(Yi )− F̂a=0(Yi )|.
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*We can combine statistics

Fisher’s exact p-value inference is valid when there is one test statistic
and one null hypothesis.

However, we can combine test statistics.

Consider two statistics S1 and S2.
The combine Scomb = g(S1,S2). (e.g. Scomb = max(S1,S2) )
Then we can calculate a p-value

P(Scomb ≤ s⋆,comb)

Mats Stensrud Causal Thinking Autumn 2022 216 / 386



Illustration of Fisher’s exact test

Under the sharp H0, we can impute missing values of the counterfactuals

i Y a=1
i Y a=0

i Ai Yi

1 −5 -5 1 -5
2 6 6 0 6
3 8 8 1 8
4 0 0 0 0

Table 3: Fisher’s idea
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The idea is resampling without replacement

Consider the estimator 1
n1

∑
i :Ai=1 Yi − 1

n0

∑
i :Ai=0 Yi . Because we have a

completely randomised experiment, the following
(4
2

)
= 6 scenarios are

equally possible under H0,

A = (1, 1, 0, 0), τ̂ =
−5 + 6− 8− 0

2
= −3.5

A = (1, 0, 1, 0), τ̂ =
−5− 6 + 8− 0

2
= −1.5

A = (1, 0, 0, 1), τ̂ =
−5− 6− 8 + 0

2
= −9.5

A = (0, 1, 1, 0), τ̂ =
5 + 6 + 8− 0

2
= 9.5

A = (0, 1, 0, 1), τ̂ =
5 + 6− 8 + 0

2
= 1.5

A = (0, 0, 1, 1), τ̂ =
5− 6 + 8 + 0

2
= 3.5
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One way of explaining Fisher’s exact test

1 Do the randomization.

2 Calculate a statistic S , a function of the observed data.

3 Under the assumption of H0, i.e. no individual level causal effect, fill
in missing potential outcomes.

4 Under the assumption of H0, generate many hypothetical replications
of the randomization, and in each of which calculate a statistic Srep.

5 Compare S with the values Srep

This is an example of a permutation test.
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More formally

Define H0 : Y
a=1
i = Y a=0

i .

Now, consider the randomisation distribution of two statistics S

Define F = (Y 0,Y 1). In this case, the randomization distributions of
S = S(A,Y ,L) is

F (s) = P(S ≤ s | F)

Then the one-sided p-value of observing the same value or more extreme of
the observed statistics S is F (S).

In our example, the one-sided p-value is 1− F (−1.5) = 1− 0.5.

Mats Stensrud Causal Thinking Autumn 2022 220 / 386



Fisher’s randomization test formally

Theorem (Nominal coverage of the exact test)

Under consistency and H0, P(F (S) ≤ α | F) ≤ α for all α ∈ (0, 1).

Proof.

This follows from some basic properties of the distribution function:
indeed, F−1(α) = sup{s : F (s) ≤ α}. Also F (s) is non-decreasing and
right-continuous and therefore

P(F (S) ≤ α) = P(S < F−1(α)) = lim
s→F−1(α)

P(S ≤ s) ≤ α.

PS: you may have seen the probability integral transform before, i.e. if X is
continuous, then Z = F (X ) ∼ U(0, 1)

P(F (X ) ≤ α) = P(X ≤ F−1(α)) = F (F−1(α)) = α.
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Conservative or good?

Conservative does not necessarily mean appropriate. Consider a confidence
interval formed by stating that a random 95% of the time, the interval is
any positive or negative number, and that 5% of the time, the interval is
the number 0. Such an interval would cover the true value of any quantity
of interest at least 95% of the time, and thus would also be a
“conservative” interval. It would not, however, be of any use....
Guido W Imbens and Donald B Rubin. Causal inference in statistics,
social, and biomedical sciences. Cambridge University Press, 2015
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Checking for no causal effect (hypothesis testing)

Suppose we want to check if there is no causal effect.

A classical frequentist approach goes as follows

Assume no effect (the null hypothesis).
Calculate a statistic,37 and see how surprising the statistics is, under
the assumption of no effect.
If it is very surprising, we reject.

This is contrapositive logic, applied to probabilities.

37A statistic is a known, real-valued function of the data
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We should be careful with this (Example from Shpitser)

Suppose we do cancer screening.

Consider a rare cancer, our outcome Y , such that
P(Y = 1) = 0.00001

Consider also a test T . And suppose
Test false positive P(T = 1 | Y = 0) = 0.01.
Test false negative P(T = 0 | Y = 1) = 0.001.

Suppose we had a positive test, Y = 1. Should we worry?

Just use Bayes theorem,

P(Y = 1 | T = 1) =
P(T = 1 | Y = 1)P(Y = 1)

P(T = 1)
≈ 0.001.

What would the Frequentist do? Assume Y = 0, and check how
surprised we would be, that is, calculate P(T = 1 | Y = 0) = 0.01,
which is surprising....

Lesson learned, if hypothesis probabilities are uneven, hypothesis
testing is not ideal..
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Abandon Statistical Significance?
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Reasons (may seem obvious, but worth a reminder)

There is nothing wrong with the p-value itself, as a mathematical construct.

However, it is often misused.

p < 0.05 is an arbitrary threshold.

P-hacking is frequently done in practice.

Blakeley B McShane et al. “Abandon statistical significance”. In: The American
Statistician 73.sup1 (2019), pp. 235–245
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Estimation (learning) in causal inference settings (informal
motivation)

An identification formula motivates estimators.
Estimation in causal inference settings is, in principle, identical to the
inverse problem you have studied in previous machine learning or
statistics classes.
However, the functionals we are estimating are sometimes unusual,
and therefore we sometimes need new estimators. Indeed, a lot of
identification results in causal inference have motivated new
estimation theory.
Broadly speaking, causal inference researchers are concerned about
bias.

After doing the hard work of deriving an identification formula, we do
not want to induce bias in the estimation step.

I remind you about how we divide the causal inference into different
tasks: (i) Define your question of interest (estimand), (ii) Evaluate
whether the estimand is identified, (iii) if it is identified, we proceed
with estimation.
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Estimation vs. identification

We have considered identification assumptions that are necessary
even if we had an infinite amount of data.

The statistical modeling assumption we consider now are invoked
because we do not have infinite amount of data.

PS: In this course we will mainly consider frequentist inference: probability
is defined as a limiting frequency. An alternative is Bayesian inference,38

which defines probability as a degree of belief.

38Again, this is not the same as a Bayesian network
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Where does randomness come from?

In causal inference

Sampling variability
Like classical statistics

Sample from superpopulation (classical inference)
Sample of counterfactuals (e.g. Fisher Randomization test)

Non-deterministic counterfactuals
But we have assumed that the counterfactuals are deterministic. And,
in practice, that doesn’t change anything when we do
superpopulation inference (we will get to it).
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Where do we do inference

Suppose we estimate the proportion of treated individuals who develop the
outcome (say, death) as

p̂ = P̂(Y = 1 | A = 1) = 7/13,

and I get 95% confidence intervals in the usual way (called Wald intervals)
as

p̂ ± 1.96

√
p̂(1− p̂)

n
.

When is this confidence interval valid and what does it mean?
Example from Hernan & Robins, Chapter 10.3
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There are two options

1 Individuals are sampled at random from an essentially infinite
super-population, sometimes referred to as the source or target
population. Then, if we repeatedly draw random samples of size 13
from the treated individuals in the super-population, the number of
individuals who develop the outcome among the 13 is a binomial
random variable with success probability equal to the true
P(Y = 1 | A = 1).
This is the model we will consider most of the time.

2 We are not considering a super-population; we are doing inference in
the sample we have. We assume that every individual i has a
non-deterministic probability pa=1

i of experiencing Y = Y a=1
i = 1

(because we consider those with A = 1). However, for the confidence
interval to be correct, we must assume that pa=1

i is constant in i , say,
pa=1
i = p. Think about the idea that pa=1

i is constant in i . This
seems very contrived, as we would believe that individuals have
different risk of the outcome, due to genetics, life style factors etc.
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Motivation for regression modelling and the curse of
dimensionality

Definition (Statistical model)

A statistical model P is a collection of laws, P = {Pη : η ∈ Γ}.

PS: Statistical models are sometimes called probabilistic hypothesis classes
in the machine learning literature.

Definition (Parametric statistical model)

A statistical model P is parametric P = {Pθ : θ ∈ Θ}, where Θ ⊆ Rk for
a positive integer k .

So far we have been non-parametric: we have not restricted ourselves to
parametric models. This is arguably desirable, because then we do not
impose parametric restrictions on the data generating mechanism.
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Consistency of an estimator

Here is an informal definition. Consistency of an estimator with respect to
a parameter (the estimand) means that, when the sample size increases,
the estimates get arbitrarily close to the parameter.
PS: This definition is with respect to an estimator. We have previously
discussed consistency as an identification conditions, concerning
interventions, which is a different thing.
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More formal definition of consistent estimator (not strictly
needed, but for your information)

Let {Pη : η ∈ Γ} is a family of distributions (laws), and
Xη = {X1,X2, . . . : Xi ∼ Pη} is an infinitely large sample from the law Pη.
Let {µ̂n(η)} be a sequence of estimators for µ(η), where e.g. µ̂n is an
estimator based on the first n observations of a sample. Then the
sequence {µ̂n(η)} is said to be (weakly) consistent if

plim
n→∞

µ̂n(η) = µ(η), for all η ∈ Γ.

where plim denotes convergence in probability, that is,

Pη(| µ̂n(η)− µ(η) |> ϵ)→ 0 as n→∞ for all ϵ > 0, η ∈ Γ.
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Motivation: Simple mean estimation

Suppose we are interested in estimating a parameter, say, h(L,A,Y ) from an
observed sample of n observations, (Li ,Ai ,Yi ), i = 1, . . . , n.

Suppose we would like to ignore the assumptions encoded in our model P
when we study h(L,A,Y ); more precisely, we will only use the fact that we
have draws from i.i.d. individuals where E(Y ) = µ and that Y is continuous
with finite variance σ2 <∞.

Our statistical model is non-parametric;
P = {P(Y = y) :

∫
y2f (y)dy <∞}. For h(L,A,Y ) ≡ E(Y ), we would

simply do the empirical mean (sample mean) En(Y ) = 1
n

∑n
i=1 Yi . By the

weak law of large numbers (WLLN),

lim
n→∞

P(|En(Y )− µ| > ϵ) = 0.

So the estimator is consistent. Indeed, the estimator is
√
n-consistent, and

by the CLT
√
n(En(Y )− µ) ∼ N (0, σ2).

Because En(Y ) has variance σ2/n, which is OP(1/n), then
√
n(En(Y )− µ) has

variance σ2 which is OP(1), i.e. ”bounded in probability” or ”uniformly tight”: A
sequence {Qn} is uniformly tight if for all ϵ > 0 there exists an M s.t.
supn P(|Qn| > M) < ϵ.
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Motivation continues

Now, suppose L is continuous and our parameter of interest is the
conditional mean h(L,A,Y ) ≡ E(Y | L).

In particular, to estimate E(Y | L = l) there exists at most one individual l
with Li = l and En(Y | L = l) = Yi , regardless of n, and clearly we do not
have

√
n-consistency.

Thus, we have to do something else...
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Parameteric modelling

Can we really say that the distribution that generated the data
belongs to a parametric model?

The answer is no in most settings. Therefore many argue that
non-parametric methods are more desirable. And this is why machine
learning methods are blooming.

However, it is often argued that studying parametric models is useful
(i) because they can be good approximations, (ii) sometimes we have
knowledge about the data generating mechanism and (iii) they
provide the background for understanding non-parametric methods.

PS: a saturated model, because it does not impose restrictions on the
data; we just call it a model because it looks like a model, but the model
does not put any restrictions on the data generating mechanism.
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What is bias

Systematic bias: We say there is systematic bias if the causal
estimand of interest is not identified.
Informally, any structural association between the treatment and the
outcome that does not arise from the causal effect of treatment on
the outcome.

Bias due to model misspecification: When we use a statistical model
that is misspecified (I give a formal definition of model
mis-specification in a later slide).
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Section 20

Lecture 9
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Reminder: Maximum Likelihood Estimation (MLE)

Consider a vector θ = [θ1, θ2, . . . , θk ]
T of parameters that indexes the

distribution {f (· ; θ) | θ ∈ Θ}, where Θ is a parameter space.
We evaluate the observed data sample Y = (Y1,Y2, . . . ,Yn), which gives us the
likelihood,

Ln(θ) = Ln(θ;Y ) = fn(Y ; θ),

where fn(Y ; θ) is a product of n density functions evaluated at
Y = (Y1,Y2, . . . ,Yn).
MLE maximises the likelihood, i.e.

θ = arg max
θ∈Θ

Ln(θ ;Y ).

The logarithm is a monotone function, and thus it is more convenient to
maximise the log-likelihood: ℓ(θ ;Y ) = log Ln(θ ;Y ). If ℓ(θ ;Y ) is differentiable in

θ, we solve M(Y ; θ) = δℓ(θ ;Y )
δθ , , i.e. the score equations (also called likelihood

equations)

p1 ≡
∂ℓ

∂θ1
= 0,

∂ℓ

∂θ2
= 0, . . . ,

∂ℓ

∂θk
= 0.

.
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*Reminder: Likelihood continues

We need local concavity. Thus, the Hessian matrix

H
(
θ̂
)
=



∂2ℓ
∂θ21

∣∣∣
θ=θ̂

∂2ℓ
∂θ1 ∂θ2

∣∣∣
θ=θ̂

. . . ∂2ℓ
∂θ1 ∂θk

∣∣∣
θ=θ̂

∂2ℓ
∂θ2 ∂θ1

∣∣∣
θ=θ̂

∂2ℓ
∂θ22

∣∣∣
θ=θ̂

. . . ∂2ℓ
∂θ2 ∂θk

∣∣∣
θ=θ̂

...
...

. . .
...

∂2ℓ
∂θk ∂θ1

∣∣∣
θ=θ̂

∂2ℓ
∂θk ∂θ2

∣∣∣
θ=θ̂

. . . ∂2ℓ
∂θ2k

∣∣∣
θ=θ̂

,

is negative semi-definite at θ̂ . The Fisher information matrix is defined as

I(θ) = E
[
H
(
θ̂
)]

.
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Logistic regression

Suppose Y ∈ {0, 1}. Define β = [β1, β2, . . . , βk ]
T as a vector of k parameter

and consider a k dimensional covariate X. Then the logistic model is defined as

logit(E[Yi | Xi ]) = logit(pi ) = log

(
pi

1− pi

)
= βTXi ,

or, equivalently, we can write that that Y follows a Bernoulli distribution,

P(Yi = y | Xi ) = pi
y (1− pi )

1−y =

(
eβ

TXi

1 + eβ
TXi

)y (
1− eβ

TXi

1 + eβ
TXi

)1−y

=
eβ

TXi ·y

1 + eβ
TXi

.

Thus the likelihood is L(β) =
∏n

i=1 pi
Yi (1− pi )

1−Yi , which can be solved
numerically, e.g. solving the score equations (you can derive this from the
log-likelihood, take derivatives wrt. β).

n∑
i=1

(
1
Xi

)(
Yi −

exp(βTXi )

1 + exp(βTXi )

)
= 0.
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M-estimation, preliminaries

You only need to know the basics of M-estimation. Some of the slides on
M-estimation, labelled with *, are additional readings that you do not need
to study in detail.

Consider a generic statistical model, and suppose we have i.i.d. random
vectors Z1, . . . ,Zn where Z ∼ PZ (z) from this model. Let θ be a k
dimensional parameter. If θ fully characterizes PZ (z), then we write
PZ (z ; θ). Let θ0 denote the true value of θ. It follows that if θ fully
characterizes PZ (z), then the true density is PZ (z ; θ0).
We are considering the (classical) statistical problem of deriving an
estimator for θ.
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Definition of an M-estimator

Definition (M-estimator)

An M-estimator for θ is the solution θ̂ (assuming that it exists and is well
defined) to the (k × 1) system of estimating equations

n∑
i=1

M(Zi ; θ̂) = 0,

We say that M(z ; θ) = {M1(z ; θ), . . . ,Mk(z ; θ)}T is an unbiased
estimating function for Eθ(M(Zi ; θ)) = 0. The expectation is taken wrt.
to the distribution of Z at θ. From now on, we will suppress the subscript
when we evaluate the expectation in the true value θ0, i.e.
E(M(Zi ; θ)) ≡ Eθ0(M(Zi ; θ)).
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MLE is an M-estimator

Consider a fully parametric model PZ (z ; θ). Define,

M(z ; θ) =
δ log(PZ (z ; θ))

δθ
,

where the right hand side is a k dimensional vector of derivatives.
Solving an estimating equation with this M(z ; θ) yields a maximum
likelihood estimator (MLE), and thus the MLE is an M-estimator.
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Methods of moment estimators are M-estimators

Consider a fully parametric model PZ (z ; θ). Define,

Mm(Zi ; θ) = Zm
i − Eθ(Z

m
i ),

where m = 1, . . . , k , i.e. k is the dimension of θ.
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Overview of properties of M-estimators

This is for your information, not something we will go

through in detail

Theorem (M-estimator)

Under suitable regularity conditions, θ̂ is a consistent and asymptotically
normal estimator,

θ̂
P−→ θ0

and √
n(θ̂ − θ0)

D−→ N (0,Σ),

where Σ is a covariance matrix.
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*Sufficient regularity conditions for M-estimators

This is for your information, not something we will go

through in detail

Suppose that the following regularity conditions hold.

1 supθ∈Θ |Mn(θ)−M0(θ)|
P−→ 0.

2 For all ϵ > 0, inf{|M0(θ)| : d(θ, θ0) ≥ ϵ} > 0 = |M0(θ0)|.
For this condition it is sufficient that there exists a unique solution, Θ
is compact and M is continuous.

3 Mn(θ̂n) = oP(1).

where Mn(θ) = En(M(Z ; θ)) is the expectation over the empirical
distribution and M0(θ) = E(M(Z ; θ)) over the true data generating law.
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*Proof that the conditions above are sufficient for the
consistency of M-estimators

Proof.

From the 2nd condition, for all ϵ > 0 there is a δ > 0 such that

P(d(θ̂n, θ0) ≥ ϵ)
≤P(|M0(θ̂n)| − |M0(θ0)| ≥ δ)
=P(|M0(θ̂n)| − |Mn(θ̂n)|+ |Mn(θ̂n)| − |Mn(θ0)|+ |Mn(θ0)| − |M0(θ0)| ≥ δ)

≤P(|M0(θ̂n)| − |Mn(θ̂n)| ≥
δ

3
) + P(|Mn(θ̂n)| − |Mn(θ0)| ≥

δ

3
)+

P(|Mn(θ0)| − |M0(θ0)| ≥
δ

3
).

Condition 1 implies that the first and third probabilities go to zero.
Condition 3 implies that the second goes to zero.
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Plan

Estimation with a point treatment.

Standardisation
Propensity methods

Uncertainty quantification

Bootstrap

Estimation with time-varying treatments
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Example: Smoking Cessation A on weight gain Y .

1566 cigarette smokers aged 25-74 years. The outcome weight gain measured
after 10 years.

Miguel A Hernan and James M Robins. Causal inference: What if? CRC Boca
Raton, FL:, 2018.
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On estimation of causal effects

From slide 72, remember that from an experiment where A is randomised
conditional on L, or more generally when consistency, positivity and
exchangeability (Y a ⊥⊥ A | L) hold, we have that

E(Y a) =
∑
l

E(Y | L = l ,A = a) Pr(L = l)

= E
[
I (A = a)

π(A | L)
Y

]
.

where π(a | l) = P(A = a | L = l).
This equality motivates different estimators.
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Regression estimator

We can also write

E(Y a) =
∑
l

E(Y | L = l ,A = a) Pr(L = l)

= E(E(Y | L,A = a)),

where you should note that the outer expectation in the second line is with
respect to the marginal of L. Denote

E(Y | L = l ,A = a) = Q(l , a).

Q(l , a) is usually unknown, even in an experiment.
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Regression estimator

Consider a parametric regression model Q(l , a;β) of Q(l , a); that is a linear or
nonlinear function of (l , a) and the finite-dimensional parameter β.
We estimate β from the observed data. For example, we could in our conditional
randomised trial pose a simple linear model

Q(l , a;β) = β1 + β2a+ βT
3 l ,

which can be fitted with least squares methods.
If the outcome is binary (Y ∈ {0, 1}), we could fit a logistic regression model
such as

logit{Q(l , a;β)} = β1 + β2a+ βT
3 l .

We can fit the logistic regression models with maximum likelihood estimators.

Definition (Correctly specified model)

A model is correctly specified if there exists a value β0 such that Q(l , a;β)
evaluated at β0 yields the true function Q(l , a).

PS: As in any regression setting, the models we have posited may or may not be
correctly specified.
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Example continues

We can estimate the conditional sample mean Ê(Y | A = 1) = 4.5 in
quitters and Ê(Y | A = 0) = 2.0 in non-quitters. More specifically,
the difference is

Ê(Y | A = 1)− Ê(Y | A = 0) = 2.5 (95% CI : 1.7, 3.4),

but we will not assign a causal interpretation to the estimates.

Let L include the baseline variables sex (0: male, 1: female), age (in
years), race (0: white, 1: other), education (5 categories), intensity
and duration of smoking (number of cigarettes per day and years of
smoking), physical activity in daily life (3 categories), recreational
exercise (3 categories), and weight (in kg).

Suppose A ⊥⊥ Y a | L.
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Standardization: A natural way of estimating
counterfactual outcomes

If we knew Q(l , a), a natural way of estimating E(Y a) is by the empirical average

1

n

n∑
i=1

Q(Li , a),

motivated by the identification formula expression E(E(Y | L,A = a)). When we
do not know Q(l , a), but we assume that our model Q(Li , a;β) is correctly
specified, we can use the outcome regression estimator to get the estimator

µ̂REG (a) =
1

n

n∑
i=1

Q(Li , a; β̂).

For example, using the linear estimator from the previous slide, we can estimate
E(Y a=1) - E(Y a=0) by

1

n

n∑
i=1

Q(Li , 1; β̂)−
1

n

n∑
i=1

Q(Li , 0; β̂) = β̂2,

that is, the regression parameter is the causal effect.
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More broadly, our causal effects are not equal to regression
coefficients

Whereas the causal effect turned out to be equal to a regression
coefficient in the previous slide, regression coefficients are not
necessarily equal to our causal effect of interest.

For example, the coefficients in the logistic regression model

logit{Q(l , a;β)} = β1 + β2a+ βT3 l .

do not necessarily translate to a causal effect of interest.
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Standardization (G-computation)

We say that standardization is a plug-in g-formula estimator because it
simply replaces the conditional mean outcome in the g-formula by its
estimates.
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Section 21

Propensity score methods
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Matching on the propensity score (intuitive motivation)

In a homework you will see that, for all a,

Y a ⊥⊥ A | L =⇒ Y a ⊥⊥ A | π(a | L).

.

We could, for each treated individual (i.e. individual with A = 1),
match this individual with an untreated individual with similar
propensity score.

Then crudely compare the mean in the two groups.

This crude comparison should be fine, but...

Potential problems

What does similar propensity score mean? A conservative approach
means that we ”waste” data, but a loose approach mean that we
compare people with different propensity scores...
How many matches should we choose?
Do we really get the average treatment effect?
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Motivation for inverse probability weighting (IPW)

We would like to adjust for confounding: imbalance between L’s
among those who are treated and untreated.

Suppose that we find a treated subject i , who due to her confounders
was unlikely to be treated. That is, π(1 | Li ) is small.

We upweight her, so that she represents herself but also the others
like herself (in terms of L) who were unexposed.

Similarly, we upweight untreated individuals with a small value of
π(0 | Li ).
Heuristically, we can think about the weighted sample as a
pseudopopulation where we observe each individual for each exposure
level. In particular, π∗(0 | Li ) = π∗(1 | Li ) for all i in the weighted
population (which we indicate by the ∗).
In this pseudopopulation, confounders are balanced between
treatment groups, and a crude comparison estimates a causal effect
(Intuitively, we get a new DAG for this pseudopopulation, where the
arrow from L to A is omitted).
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Motivating example

Suppose the counterfactual data are:

and the average treatment effect E(Y a=1)− E(Y a=0) = 1.
but we observe:

The naive contrast E(Y | A = 1)− E(Y | A = 0) = 7
4 −

6
5 = 0.55.

Example from Oliver Dukes.
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Example continues

However, from the table we see that,

π̂(1, group A) =
2

3

π̂(1, group B) =
1

3

π̂(1, group C) =
1

3

Let us estimate E(Y a=1) by a weighted average, where each observation is
weighted by 1

π̂(1,group X) ,Group X ∈ {Group A,Group B,Group C},

(1 + 1) 32 + 2 3
1 + 3 3

1
3
2 + 3

2 + 3
1 + 3

1

= 2

and estimate E(Y a=0) by weighting each observation by 1
π̂(0,Group X) ,

Group X ∈ {Group A,Group B,Group C},

0 3
1 + (1 + 1) 32 + (2 + 2) 32

3
1 + 3

2 + 3
2 + 3

2 + 3
2

= 1.
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Estimation when the propensity score is known

When π(a | l) is a known function, the estimator of E(Y a) is

µ̂IPW (a) =
1

n

n∑
i=1

I (Ai = a)Yi

π(Ai | Li )
.

The propensity score π(a | l), unlike the function Q(l , a), is known in
randomised experiments (it is determined by the investigator). However, in
most observational data settings, it is unknown.
PS: This estimator has been known for a long time and is often called the
Horvitz Thompson estimator in survey sampling39.

39Daniel G Horvitz and Donovan J Thompson. “A generalization of sampling without
replacement from a finite universe”. In: Journal of the American statistical Association
47.260 (1952), pp. 663–685.
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Estimation when the propensity score is unknown

More generally, we can propose a regression model π(A | L; γ) for π(A | L),
and we can consider the estimator

µ̂IPW (a) =
1

n

n∑
i=1

I (Ai = a)Yi

π(Ai | Li ; γ)
.

For example, suppose that we fit a logistic regression model and find the
MLE γ̂ of γ, which is the solution to the estimating equation (See slide
242)

n∑
i=1

(
1
Li

)(
Ai −

exp(γ1 + γT2 Li )

1 + exp(γ1 + γT2 Li )

)
= 0.
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Section 22

Lecture 10
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Marginal Structural Models

We have learned that a statistical models puts restrictions on laws,
that is, it puts restriction on conditional distributions (densities).

Thus, the statistical model puts restrictions on the observed data
distributions.

A causal model puts restrictions on counterfactual densities, e.g.
based on independence (⊥⊥) restrictions.
We can make a causal (structural) model parametric by imposing
parametric models for counterfactuals. Examples of such models are
marginal structural models. Note that these models cannot be fitted
directly to the data, because we don’t directly observe the
counterfactuals (see next slide)
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Marginal structural models

An alternative way of weighting by the propensity scores is to define a
so-called marginal structural model, which is a statistical model that
parameterizes a functional of a marginal counterfactual Y a (not the joint
counterfactual (Y a=1,Y a=0)).

An example of a marginal structural model is

E(Y a) = η0 + η1a.

This model is saturated40 for a binary A and implies that

E(Y 0) = η0

E(Y 1) = η0 + η1

E(Y 1)− E(Y 0) = η1

You can think about this as a regression model that is fitted to a
(pseudo)population where A is randomly assigned.

40it does not impose restrictions on the data.
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Estimator in marginal structural model

The estimator in a marginal structural model will look like

µ̂MSM(a) =

1
n

∑n
i=1

I (Ai=a)Yi

π(Ai |Li ;γ)
1
n

∑n
i=1

I (Ai=a)
π(Ai |Li ;γ)

.

I have omitted a proof.
PS: you can also try to show that, under our identifiability assumptions, µ̂MSM(a) is a
consistent estimator of E(Y a) by using results for weighted least square regressions.
Both µ̂IPW (a) and µ̂MSM(a) are consistent. If Y is binary, only µ̂MSM(a) ensures that the
estimate of E(Y a) is in [0, 1].
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Further intuition on inverse probability weighting

We can think of IPTW as creating an imaginary pseudopopulation in which
there is no confounding: informally, we have a population where each
individual i is represented by themselves and wi − 1 other individuals, where
wi is the weight of individual i .

More formally, we consider a new law defined by a likelihood ratio (see
next slide)

Indeed, this is the way many applied researchers (including applied
statisticians) think about this way of modelling. Formally, we do not need
the concept of a pseudopopulation, but it is sometimes a useful motivation
for the math and gives us some direction to come up with solutions.

To be explicit, let us use the subscript “ps” to denote probability and
expectation in the pseudopopulation (Pps and Eps), while P and E without
subscripts refer to the actual population. Consider the observed data
(YA, L) .
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Estimation when the propensity is unknown

Define θ = (µ, γT )T , and solve the stacked estimating equations

n∑
i=1

(
I (Ai = a)Yi

π(Ai | Li ; γ)
− µ

)
= 0

n∑
i=1

(
1
Li

)(
Ai −

exp(γ1 + γT2 Li )

1 + exp(γ1 + γT2 Li )

)
= 0,

The solution µ̂IPW to this system is an M-estimator, and therefore it is
consistent (under our regularity conditions). We can use M-estimator
theory to argue that the estimator is asymptotically normal.
In the next slide, we will study an interesting special case.
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Outcome prediction for predictive purposes

Outcome regression is often used for purely predictive purposes.

Online stores would like to predict which customers are more likely to
purchase their products. The goal is not to determine whether your age, sex,
income, geographic origin, and previous purchases have a causal effect on
your current purchase. Rather, the goal is to identify those customers who
are more likely to make a purchase so that specific marketing programs can
be targeted to them. It is all about association, not causation. Similarly,
doctors use algorithms based on outcome regression to identify patients at
high risk of developing a serious disease or dying.

A study found that Facebook Likes predict sexual orientation, political
views, and personality traits (Kosinski et al, 2013). Low intelligence was
predicted by, among other things, a “Harley Davidson” Like. This is purely
predictive, not necessarily causal.

From Hernan and Robins, Causal inference: What if?
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Prediction and procedures for model selection

Model selection is a different endeavour when the aim is prediction.

Investigators who seek to do pure predictions may want to include any
variables that, when used as covariates in the model, improve its predictive
ability.

This motivates the use of selection procedures, such as forward selection,
backward elimination, stepwise selection and new developments in machine
learning.

However, using these procedures for causal inference tasks can be
unnecessary and harmful. Both bias and inflated variance may be the result.

For example, we do not fit a propensity score model to predict the treatment
A as good as possible: we just fit the model to guarantee exchangeability.
Indeed, covariates that strongly associated with treatment, but are not
necessary to guarantee exchangeability, do not reduce bias. Adjustment for
these variables can lead to larger variance...
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Example: The IPW estimator and variance

Suppose that we are in the randomised experiment, such that γ is known:
let P(A = 1 | L) = 0.5, so A ⊥⊥ L. Suppose also that we adapt the
correctly specified model π(1 | l ; γ) = γ. In particular, the truth is
γ0 = 0.5.
Statistician 1 suggests using the true value γ0 = 0.5 because it is known.
Statistician 2 suggests using the MLE π(1 | l ; γ̂) = γ̂ = 1

n

∑n
i=1 Ai .

Who selected the most efficient estimator?
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*Statistician 1

The estimator for µ1 = E(Y a=1) = E(Y | A = 1) is

µ̂1 =
1

n

n∑
i=1

AiYi

γ0
=

n∑
i=1

AiYi

n/2

µ̂1 is consistent because E(YA) = E(AE(Y | A)) = µ1

2 and thus

n−1
∑n

i=1 AiYi
P−→ µ1

2 . After some algebra,

√
n(µ̂1 − µi ) = 2n−1/2

n∑
i=1

(AiYi − µ1/2).

Define σ2
1 = var(Y | A = 1),

var(AY ) = E(var(AY | A)) + var(E(AY | A)) (8)

= E(Aσ2
1) + var(Aµ1) =

σ2
1

2
+
µ2
1

4
. (9)

CLT:
√
n(µ̂1 − µi )

D−→ N (0, 2σ2
1 + µ2

1).
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*Statistician 2

The estimator for µ1 = E(Y a=1) = E(Y | A = 1) is

µ̂∗
1 =

1

n

n∑
i=1

AiYi

γ̂
=

∑n
i=1 AiYi∑n
i=1 Ai

.

Indeed, µ̂∗
1 is consistent, E(YA) = E(AE(Y | A)) = µ1

2 , so that

n−1
∑n

i=1 AiYi
P−→ µ1

2 and n−1
∑n

i=1 Ai
P−→ 1

2
After some algebra,

√
n(µ̂∗

1 − µi ) =
n−1/2

∑n
i=1 Ai (Yi − µ1)

n−1
∑n

i=1 Ai

var(A(Y − µ1)) = E(Avar(Y − µ1) | A) + var(AE(Y − µ1) | A) =
σ2
1

2
+ 0

CLT and Slutsky’s theorem :
√
n(µ̂∗

1 − µi )
D−→ N (0, 2σ2

1).
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Interesting insight from Statistician 1 vs Statistician 2

It is more efficient to estimate the propensity score, even if the true
propensity is known. (This is a more general result; not just a special
case we have considered here.)

Does this contradict what we know from MLE theory, where including
more known information, leads to lower variance? No, this is not a
contradiction because the IPW estimator is not an MLE for µ1.
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Standard error and variance for IPW estimators

We can sometimes obtain variance estimators from M-estimator
theory.

However, I do suggest using the bootstrap for the settings we
consider here (see next slide for a brief introduction to bootstrap).

Computer intensive but convenient.
Simple in practice, but rigorous theory behind
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*On the variance of M-estimators

Under regularity conditions, the asymptotic properties of an M-estimator θ̂ can be
derived from Taylor series approximations, the law of large numbers, and the
central limit theorem. Here is a brief outline.

Let θ0 and Ṁ(Zi , θ) = ∂M(Zi , θ)/∂θ
⊺ (This is a k × k matrix).

C (θ0) = E [−Ṁ(Zi , θ0)], and

B(θ0) = E [M(Zi , θ0)M(Zi , θ0)
⊺]. Then under suitable regularity

assumptions, θ̂ is consistent and asymptotically Normal, i.e.,

√
n(θ̂ − θ0)

d→ N(0,Σ(θ0)) as n→∞,

where Σ(θ0) = C (θ0)
−1B(θ0){C (θ0)

−1}⊺.
This can be seen by a first-order Taylor series expansion of each row of the
estimating equation

∑n
i=1 M(Zi ; θ̂) = 0 in θ̂ about θ0,

0 =
n∑

i=1

M(Zi ; θ0) +
n∑

i=1

[
Ṁ(Zi , θ

∗)
]
(θ̂ − θ0),

where θ∗ is a value between θ̂ and θ0.
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*Variance continues

The sandwich form of Σ(θ0) suggests several possible large sample variance
estimators.

For some problems, the analytic form of Σ(θ0) can be derived and
estimators of θ0 and other unknowns simply plugged into Σ(θ0).

Alternatively, Σ(θ0) can be consistently estimated by the empirical sandwich
variance estimator, where the expectations in C (θ) and B(θ) are replaced
with their empirical counterparts.

Let Ci = −Ṁ(Zi , θ)|θ=θ̂,Cn = n−1
∑n

i=1 Ci ,Bi = M(Zi , θ̂)M(Zi , θ̂)
⊺, and

Bn = n−1
∑n

i=1 Bi . The empirical sandwich estimator of the variance of θ̂ is:

Σ̂ = C−1
n Bn{C−1

n }⊺/n.
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Bootstrap

Bootstrap is a method for estimating the variance of a parameter.
Let Un = g(X1, . . . ,Xn) be a statistic, i.e. a function of data. For example,

µ̂IPW (a) = 1
n

∑n
i=1

I (Ai=a)Yi

π(Ai |Li ;γ̂)
, where in this case Xi = (Li ,Ai ,Yi ).

We want to estimate VAR(Un), and the bootstrap is motivated by two steps

1 Estimate VAR(Un) by VARP̂n
(Un), where P̂n is the empirical distribution.

2 Approximate VARP̂n
(Un) using simulations.

Step 2 is very useful when it is hard to express the closed form solution to the
variance of Un. Bootstrap variance estimation is done as follows:

1 Draw X ∗
1 , . . . ,X

∗
n ∼ P̂n. (Sample with replacement from (X1, . . . ,Xn))

2 Compute U∗
n = g(X ∗

1 , . . . ,X
∗
n ).

3 Repeat step 1 and 2 K times to get U∗
n,1,U

∗
n,2, . . . ,U

∗
n,K .

41

4 vboot =
1
K

∑K
k=1

(
U∗
n,k − 1

K

∑K
l=1 U

∗
n,l

)2
41Usually ≥ 1000 times.
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Bootstrap

Bootstrap is based on two approximations

VAR(Un) ≈ VARP̂n
(Un) ≈ vboot.

Bootstrap is very useful in practice and simple to implement:
You just draw X ∗

1 , . . . ,X
∗
n with replacement from (X1, . . . ,Xn).
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Bootstrap confidence intervals

Bootstrap confidence intervals can be created in several ways.

1 The normal intervals: Un ± ηα/2ŝeboot ,
√
vboot = ŝeboot , where ηα/2 is the

α/2 quantile of a standard normal variable. this requires Un to be close to
normal.

2 Percentile intervals: Define the interval Cn = (U∗
η/2,U

∗
1−η/2), where U∗

ρ is

the ρ sample quantile of (U∗
n,1,U

∗
n,2, . . . ,U

∗
n,K ).

3 Studentised pivot intervals: Often perform better. A pivot is a random
variable whose distribution does not depend on unknowns.

There are also many other ways of obtaining bootstrap confidence intervals.
One high-level disclaimer: The bootstrap can, under certain data generating
mechanisms, fail. If we have i.i.d. data an we study functionals that are
reasonably smooth, which we study in the course the bootstrap will usually work.
We will not consider violations in depth here.
For a detailed theory on the bootstrap, see Anthony Christopher Davison and
David Victor Hinkley. Bootstrap methods and their application. 1. Cambridge university
press, 1997
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Section 23

Doubly robust estimators
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Precision and IPW

IPW estimators are often considered to be inefficient, that is, to have
low precision.

In principle, we can give two reasons why:

They give a more appropriate (”honest”) reflection of the uncertainty,
because they do not rely on implausible model assumptions.
They are truly inefficient, and we could impose the same model
assumptions, and obtain a more efficient estimator.

Asymptotic results from semi-parametric efficiency theory suggest
that both these explanations can be true. We will not go into the
details of semiparametric estimation theory, but we will show
properties in some interesting examples.
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Doubly robustness

Natural way is to combine both regression and inverse probability
weighting.

Give a full factorization and see which terms are estimated in IPW
and regression modelling.

Definition (Doubly robust estimator)

An estimator µ̂ of a parameter µ is doubly robust if it is a consistent
estimator for µ if either of two models are correctly specified (e.g., the
propensity model or the outcome regression model is correctly specified),
but not necessarily both models are correctly specified.
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Doubly robust estimator

Theorem (Doubly robust estimator of E(Y | L,A = a))

If either the propensity model π(a | l ; γ) or the outcome regression model
Q(l , a;β) is correctly specified, then

E

[
I (A = a)Y

π(a | L; γ)
+

(
1− I (A = a)

π(a | L; γ)

)
Q(L, a;β)

]
= E[E(Y | L,A = a)].

Intuitively, the doubly robust estimator – unlike the simple inverse
probability weighted estimator – exploits information from both treated
and untreated. PS: note that we can re-write the expression in the theorem,

E
[
I (A = a)Y

π(a | L; γ)
+
(
1− I (A = a)

π(a | L; γ)
)
Q(L, a;β)

]
=E

[
Q(L, a;β) +

I (A = a)

π(a | L; γ)
{Y − Q(L, a;β)}

]
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Proof

Proof.

Suppose first that π(a | l ; γ) is correctly specified, but the outcome model
Q(l , a;β) is misspecified. Use iterative expectation,

E
{
I (A = a)Y

π(a | L; γ)

}
=E

{
I (A = a)

π(a | L; γ)
E (Y | L,A)

}
=E

{
I (A = a)

π(a | L; γ)
E (Y | L,A = a)

}
=E

{
E(I (A = a) | L)
π(a | L; γ)

E (Y | L,A = a)

}
=E

{
(π(a | L)
π(a | L; γ)

E (Y | L,A = a)

}
=E {E(Y | L,A = a)} .
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Proof continues

Proof.
Next, consider the second term

E

{(
1− I (A = a)

π(a | L; γ)

)
Q(L, a;β)

}
=E

{
E

[(
1− I (A = a)

π(a | L; γ)

)
Q(L, a;β) | L

]}

=E

{
E

(
1− E(I (A = a) | L)

π(a | L; γ)

)
Q(L, a;β)

}
=E {(1− 1)Q(L, a;β)} = 0.
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Proof continues (note: no reference to counterfactuals)

Proof.

Suppose now that π(a | l ; γ) is mis-specified, but the outcome model Q(l , a;β) is
correctly specified. After some algebra,

E
[
I (A = a)Y

π(a | L; γ)
+
(
1− I (A = a)

π(a | L; γ)
)
Q(L, a;β)

]
=E

[
Q(L, a;β) +

I (A = a)

π(a | L; γ)
{Y − Q(L, a;β)}

]
Due to the correct specification, we know that the first term
E[Q(L, a;β)] = E[E(Y | L,A = a)]. Furthermore, using iterative expectation on
the second term (conditional on L, similar to part 1 of the proof)

E
[
I (A = a)

π(a | L; γ)
{Y − Q(L, a;β)}

]
=E

[
E (I (A = a) | L)
π(a | L; γ)

{E (Y | L,A = a)− Q(L, a;β)}
]
= 0.
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Some practical thoughts on estimation

If we cannot guarantee that our model is correctly specified, we should in
principle try to use different estimators (In practice it can be difficult).

If all estimators give similar results, then there is some evidence (but not a
guarantee!!) that we have modelled the problem correctly.

If the estimators do not give the same results, try to understand why...

In practice some degree of misspecification is inescapable in all models, and
model misspecification will introduce some bias. But the misspecification of
the treatment model (IP weighting) and the outcome model
(standardization) will not generally result in the same magnitude and
direction of bias in the effect estimate. Therefore the IP weighted estimate
will generally differ from the standardised estimate because unavoidable
model misspecification will affect the point estimates differently.

The main advantage of doubly robust estimators is that they can have small
bias, even when Q(l , a) and π(a | l) are estimated with machine learning
methods. This has to do with the fact that the bias of the doubly robust
estimator is a product of the errors in estimating Q(l , a) and 1

π(a|l) .

Mats Stensrud Causal Thinking Autumn 2022 291 / 386



Section 24

Lecture 11
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Section 25

Time-varying treatments
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Extension: time-varying treatments

When the identification conditions hold, we target the g-formula, here
for a static regime,

E(Y a) =
∑
y

yba(y) =
∑
lK

E(Y | lK , aK )
K∏
j=0

p(lj | l j−1, aj−1),

see slide 180.

We have considered the case with K = 1, and we either modelled

the outcome mean (parametric g-formula, also called standardization)
IPW

This can be generalized to any K
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G-formula for time-varying treatment

Suppose we target:

E(Y a) =
∑
y

yba(y) =
∑
lK

E(Y | lK , aK )
K∏
j=0

p(lj | l j−1, aj−1),

The generalization of standardisation, which is often called the
parametric g-formula or g-computation (but not g-estimation) is to
model p(lj | l j−1, aj−1) for all j ≤ K and p(y | lK , aK ).
The practical problem is that p(lj | l j−1, aj−1) migh be densities, and
density estimation is much harder than mean estimation.

Indeed, the sums, or in the continuous case integrals, are intractable
for large k

Mats Stensrud Causal Thinking Autumn 2022 295 / 386



G-formula algorithm

Given n individuals with observed variables AK , LK ,Y .
1 Assume statistical models for

E(Y | lK , aK ;β), and
p(lj | l j−1, aj−1;αj).

2 Fit each models by MLE, which would give us β̂ and α̂j for all j ≤ K .
3 Obtain an estimate of

∑
y yba(y) by

for each individual i and time j , sequentially sample r draws, where a
draw mi for individual i is
Sample Lj,mi ∼ p(Lj | Lj−1,mi , Lj−2,mi , . . . , L0,i , aj−1; α̂j)

Compute Ymi ≡ E(Y | LK ,mi , LK−1,mi , . . . , L0,i , aK ; β̂)
return

1

nr

n∑
i=1

r∑
mi=1

Ymi

4 Give bootstrap confidence intervals.
Note that this means sampling twice: one time to evaluate the
evaluate the big sum in the ”return” statement, second time to get
confidence intervals.
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Pros/Cons of g-computationo (from Shpitser)

Positives:

Efficient if the models are correctly specified.

In practice, people have reported that the approach is fairly robust to
misspecification in practice.

Conceptually, this is simple.

Negatives:

Have to do a lot of (parametric) modeling, which means a risk of
model misspecification.

In general settings, this could be intractable and very slow.

Sampling is computationally intensive

Sampling trajectories can be unstable.
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Study on weight gain continues

Slightly extended graph

A a C a c = 0

L

Y a,c=0
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Example: Smoking Cessation A on weight gain Y .

1566 cigarette smokers aged 25-74 years. The outcome weight gain measured
after 10 years.

Hernan and Robins, Causal inference: What if?
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Example; Censoring: weight gain study continues

Suppose that there were 63 additional individuals who met our eligibility
criteria but were excluded from the analysis because their weight in 1982
was not known. That is, their outcome was censored.

Excluding the censored individuals will lead to selection bias due to
conditioning on a collider.

Then, the naive estimate can be correctly described as

Ê(Y | A = 1,C = 0)− Ê(Y | A = 0,C = 0) = 2.5 (95% CI : 1.7, 3.4),

On the other hand, the causal effect of interest is

Ê(Y a=1,c=0)− Ê(Y a=0,c=0)

We derived an identification formula
E [Y a,c=0] =

∑
l E [Y | A = a,C = 0, L = l ]P(L = l), that motivates a

-formula estimator, see the next slide.
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Estimation using the g-formula in the smoking example

We can estimate Ê(Y a,c=0) by a plug-in g-formula estimator or a parametric
g-formula estimator,

1

n

n∑
i=1

Ê(Y | A = a,C = 0, Li )

where Ê(Y | A = a,C = 0, Li ) is a regression model, like Q(l , a;β) which is fitted
to those who are uncensored (C = 0).

Suppose that included a product term between smoking cessation A and
intensity of smoking, but otherwise only main terms. This implies that our
model imposes the restriction that each covariate’s contribution to the mean
is independent of that of the other covariates, except that the contribution
of smoking cessation varies linearly.

If we were interested in the average causal effect in a particular subset of the
population, say characterised by V , we could have restricted our calculations
to that subset.
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Section 26

More on IPW
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Censoring: weight gain study continues with IPW

We can consider an IPW estimator in the presence of censoring

We multiply the original IPW weight with an inverse probability of
censoring weight,

πC (c , a, l) ≡ P(C = c | A = a, L = l).

The proof that this work is essentially identical to the proof that IPW
weighting works. Just replace π(a, l) in the original proof with the
product π(a, l)πC (0, a, l) = P(A = a,C = 0 | L = l).

Explicitly,

µ̂IPW (a) =
1

n

n∑
i=1

I (Ai = a,Ci = 0)Yi

π(Ai | Li ; γ1)πC (0, a, Li ; γ2)
.

How would you obtain an estimate of πC (0, a, l)?
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General positivity definition

Here is a more general definition of positivity that I include for your
reference. The function gjl (·) is the function that gives a value to ajl under
the counterfactual regime g of interest.

Definition (Positivity)

for each k ∈ {0, . . . ,K}, suppose

p(vjk | v jk−1) > 0 ∀ v jk s.t.

p(v jk−1) > 0 and v jl = gjl (v jl−1), l = 1, . . . , k.

The intuition is that covariates that will have positive probability in the
counterfactual world must also have positive probability in the observed
world. Otherwise, we cannot identify outcomes in the counterfactual world
from the observed data distributions.
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IPW more explicitly

We define the law Pps(Y = y ,AK = aK , LK = lK ) by the likelihood
ratio

pps(Y ,AK , LK )

p(Y ,AK , LK )
=

g(AK )∏K
k=0 p(Ak | Lk ,Ak−1)

,

where we sometimes use the short hand notation AK = A and
LK = L. Thus

g(A) =
∏K

k=0 pps(Ak | Lk ,Ak−1),
p(Y | LK ,AK ) = pps(Y | LK ,AK )∏K

j=0 p(Lj | Lj−1,Aj−1) =
∏K

j=0 pps(Lj | Lj−1,Aj−1)

That is, most of the conditional densities are identical in the
pseudopopulation and the observed population, and, importantly,
g(A) is not a function of L

Intuitively, We can think of IPTW as a procedure to cut the arrows
(in a DAG) from the covariate history (Lk ) into treatment (Ak).
Indeed, many applied researchers like this heuristic way of thinking
about the problems.
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IPW continues: 2 features

Now we state two features of IPW.
Feature 1:

When using unstabilised weights,
Pps(Ak = ak | Ak−1 = ak−1, Lk = lk) = 0.5.
In the pseudopopulation, we have that

(Ak ⊥⊥ Ak−1, Lk)ps

When using stabilised weights,
Pps(Ak = ak | Ak−1 = ak−1, Lk = lk) = P(Ak = ak).
In the pseudopopulation, we have that

(Ak ⊥⊥ Lk | Ak−1)ps .

PS: A pseudopopulation is defined differently than a

counterfactual population, but the results in the next

slide shows how they are related.
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IPW continues: 2 important features

Feature 2:
Suppose that exchangeability, positivity and consistency hold. Then, IPW
creates a pseudopopulation characterised by the following:

Regardless of whether we use unstabilised or stabilised weights or not,

E(Y a) = Eps(Y
a) = Eps(Y | A = a).

Thus, the average causal effect is equal to association in the
pseudopopulation, and we have that

E(Y a)− E(Y a′) = Eps(Y | A = a)− Eps(Y | A = a′).
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IPW theorem

We will give a theorem that shows feature 2 42:
Remember that the g-formula for the marginal of Y ≡ YK under treatment
assignment a ≡ aK = (a0, . . . , aK ) is defined as

ba(y) =
∑
lK

p(y | lK , aK )
K∏
j=0

p(lj | l j−1, aj−1).

Theorem (IPW theorem)

Under positivity, ∫
yba(y)dy = Eps(Y | A = a).

You will see that the theorem is very similar to other IPW results we have already
shown.

42Feature 1 follows from some of the steps in the proof of feature 2, but I haven’t
written out all the details here
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*Lemma of IPW theorem

Lemma
If the weights take the form

g(A)∏K
k=0 p(Ak | Lk ,Ak−1)

,

then

ba(y) =
1

g(a)
E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)
p(y | LK ,AK )

}
.
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Proof.

ba(y)

=
∑
lK

p(y | lK , aK )
K∏
j=0

p(lj | l j−1, aj−1)

=
∑
lK

p(y | lK , aK )
∏K

k=0 p(ak | lk , ak−1)∏K
k=0 p(ak | lk , ak−1)

K∏
j=0

p(lj | l j−1, aj−1)

=
∑
lK

1∏K
k=0 p(ak | lk , ak−1)

p(y | lK , aK )
K∏

k=0

p(ak | lk , ak−1)
K∏
j=0

p(lj | l j−1, aj−1)

=
∑
lK

1∏K
k=0 p(ak | lk , ak−1)

p(y , lK , aK ).
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Proof.

=
∑
lK

1∏K
k=0 p(ak | lk , ak−1)

p(y , lK , aK )

=
∑
lK

∑
a∗

I (a∗ = a)∏K
k=0 p(a

∗
k | lk , a

∗
k−1)

p(y , lK , a
∗
K )

=
1

g(a)

∑
lK

∑
a∗

g(a∗)I (a∗ = a)∏K
k=0 p(a

∗
k | lk , a

∗
k−1)

p(y | lK , a∗K )p(lK , a∗K )

=
1

g(a)
E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)
p(y | LK ,AK )

}
.

where the expectation is taken over AK , LK under the distribution that generated
the observed data, and positivity is used in the last line.

So the lemma from Slide 309 is shown.
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*A corollary

Proof.∫
yba(y)dy

=

∫
y

1

g(a)
E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)
p(y | LK ,AK )

}
dy

=
1

g(a)

∫
E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)
yp(y | LK ,AK )

}
dy

=
1

g(a)
E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)
Y

}
(by def of expectation)

Mats Stensrud Causal Thinking Autumn 2022 312 / 386



*Another (simple) lemma

Lemma (individuals with A = a in the psedopopulation)

E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)

}
= g(a).

Proof.

We use that the g-formula is a density, i.e. that
∫
ba(y)dy = 1,

1 =

∫
ba(y)dy =

∫
1

g(a)
E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)
p(y | LK ,AK )

}
dy

g(a) = E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)

}
,

where we used that integrals of sums are sums of integrals.
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*PS: Pseudopopulation vs observed population

Just a PS: the lemma allows us to characterize the number of treated in
the pseudopopulation vs the original population. Recall that E(I (A = a))
is the fraction of individuals with A = a in the observed population. Let n
be the total size of the observed population. Then

n × E(I (A = a))

is the expected number of individuals with A = a in the observed
population and

n × E

{
g(A)I (A = a)∏K

k=0 p(Ak | Lk ,Ak−1)

}
= n × g(a)

is the expected number of individuals with A = a in the pseudopopulation.
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*Finally: A poof of the Theorem

Proof.

plugging in for g(a) in the Expression from the Corollary on slide 312,

=

E

{
g(A)I (A=a)∏K

k=0 p(Ak |Lk ,Ak−1)
Y

}

E

{
g(A)I (A=a)∏K

k=0 p(Ak |Lk ,Ak−1)

} (i.e. an IPW formula)

=
Eps(I (A = a)Y )

Pps(A = a)

= Eps(Y | A = a).

This allows us to say ”association is causation” in the pseudopopulation.
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We can encode various assumptions in MSMs

Suppose we hypothesize that the causal effect of treatment history a on the
mean of Y is a linear function of the cumulative exposures, i.e.

cum(a) =
K∑

k=0

ak .

This hypothesis is included in the MSM

E(Y a) = Eps(Y | A = a) = η0 + η1cum(a).

That is, we model the marginal mean of the counterfactuals Y a. Whereas
there are 2K treatment combinations (unknowns on the left-hand side of the
equation), we have now reduced the model such that there are only two
unknowns on the right-hand side of the equation.

Obviously, like a statistical model, this model could also be misspecified, e.g.
if the counterfactual outcome depends on some other function of the regime
or if the outcome depends nonlinearly on the cumulative exposure.
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*Motivating the weighted regressions

Lemma (Result for weighted least squares)

Suppose excheangeability, consistency and positivity hold. Then
Eps(Y | A = a) =

∫
yb(a)dy = E(Y a). Then,

E

{
g(A)∏K

k=0 p(Ak | Lk ,Ak−1)
[Y − E(Y A)]

}

Eps

{
[Y − E(Y A)]

}

=Eps

{
Eps

{
[Y − E(Y A)] | A

}}
=0, because the inner expectation above is 0.
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Consider now the estimating equations

We use the results from the previous slide and the parameterisation

E(Y a) = η0 + η1cum(a).

Now, consider the (two-dimensional) estimating equation

n∑
i=1

M(Lk,i ,Ai ; η0, η1) = 0,

where

M(Lk ,A; η0, η1) =
g(A)∏K

k=0 p(Ak |Lk ,Ak−1;γ)

(
1

cum(A)

)
[Y − η0 − η1cum(A)].

This is an estimating equation for the weighted least squares estimator,
where we simultaneously also solve the estimating equations for the
propensities. Together, we denote the estimating equations for the
counterfactual model and the propensity scores a ”stacked estimating
equation”.
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Null hypotheses in MSMs

Note that under the null hypothesis of no effect of any ak , the MSM is
correctly specified with

E(Y a) = η0.

However, the standardisation estimator (parametric g-formula estimator)
suffers from the so-called ”g-null-paradox”. That is, it is possible to show
that it will always reject the null hypothesis – even if the null hypothesis is
true – when the sample size grows.
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Treatment-confounder feedback

A0 a0 Aa0
1 a1

La0

Y a0,a1

H

we cannot adjust for L using traditional methods, like stratification,
outcome regression, and matching.

But we read off that Y a0,a1 ⊥⊥ A0 and Y a0,a1 ⊥⊥ Aa0
1 | L

a0
0 ,A0 = a0,

and we can fit MSMs, like the one on Slide 318.
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MSMs and effect modification

Suppose that an investigator believes that for a particular component V of the
vector of baseline covariates L0, there might exist qualitative effect modification
with respect to V . For example, suppose that A = 1 is harmful to subjects with
V = 0 and beneficial to those with V = 1.
To examine this hypothesis, we would elaborate the MSM,

E(Y a | V ) = η0 + η1cum(a) + η2V + η3cum(a)V .

Then we have qualitative effect modification if sign(η1) ̸= sign(η1 + η3).
We can e.g. use the weights, ∏K

k=0 p(Ak | V ,Ak−1)∏K
k=0 p(Ak | Lk ,Ak−1)

in a weighted least squares regression model.
One thing to notice: Here, IPW is used to adjust for confounding and regression
modelling is used to study effect modification.
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MSMs and direct effects

To illustrate a point, consider the saturated MSM for two binary treatments A0,
A1,

E(Y a) = E(Y a0,a1) = η0 + η1a0 + η2a1 + η3a0a1.

Now, the direct effect of A0 when A1 is set to 1 is E(Y 1,1)− E(Y 0,1).
How do we articulate the hypothesis that E(Y 1,1) = E(Y 0,1)?

E(Y 1,1) = E(Y 0,1)

η0 + η1 + η2 + η3 = η0 + η2

0 = η1 + η3
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Optimal regimes and dynamic MSMs

Suppose that we aim to find the optimal treatment regime g∗ in a given
class of regimes {g = x : x ∈ X}, where |X | = m. Suppose that
x ∈ {0, 1, . . . , 999}. Let n = 2000 individuals.

Suppose I come up with the following strategy: Run an experiment
and randomly assign the regime g (In the experiment, we know
association is causation)

Maximize Ê(Y | X = x)

Problem: We have m regimes, but only 2000 people so Ê(Y | X = x)
will be too variable...we will expect to have two people receiving the
regime.

Running example: Once we have started treatment (say, antiretroviral
therapy in patients with HIV), then we never stop treatment. The
question is: what is the best X to start treatment?
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Dynamic MSMs

Constructing an MSM allows us to impose assumptions, and then borrow
strength across the regimes g , for example by assuming that
E(Y | X = x) = E(Y x) is smooth in x .

Note that we have to do this even if the data are from an experiment.

Idea: for example, suppose we fit the model

E(Y x) = η0 + η1x + η2x
2 + η3x

3.

Then, we find the optimal regime g∗ by maximising η1x + η2x
2 + η3x

3 over
x .

However, because there may be qualitative effect modification, we can
expand the model to

E(Y x | V ) = η0 + η1x + η2x
2 + η3x

3 + η4xV ,

and for each value of V maximize η1x + η2x
2 + η3x

3 + η4xV over x ,
g(v) = argmax

x∈X
η1x + η2x

2 + η3x
3 + η4xv
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Advantages of MSMs

Easy to understand

Can be fitted with simple (weighted models) in standard statistical
software
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Precision medicine is a buzz word

My claim:
Modelling the disease process is of secondary importance in precision

medicine, except when it helps support the identification (and estimation)
of optimal regimes.
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Precision medicine is a buzz word, and the idea is simple

The idea is to tailor treatment decisions to patient characteristics.

The premise: individual heterogeneity can be leveraged to
individualize therapy.

Work on causal inference gives us theory for optimizing individual
decisions.

What if patient i receives treatment A vs. treatment B?
That is, what is the causal effect of taking A vs. B...
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Algorithmic vs. human decisions

Decision rules might be algorithmically individualized.43

Yet these rules will be implemented under supervision of humans
(e.g., doctors).44

Are optimal algorithmic regimes better than human-decision rules?

Care providers may have information that is not recorded in the
observed data.
=⇒ unmeasured confounding in the data.
So, when should we let humans override algorithmic treatment
recommendations?

43topol2019high.
44matheny2019artificial.
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...but causal inference requires strong assumptions, no?

We need to take the causal question seriously.
Scientists who choose not to give up causal inference must
understand that, without selecting a definition of a causal effect, it is
impossible to evaluate whether we have reasonably estimated one.

Can we deal with unmeasured confounding?

Sometimes we can point identify effects in the presence of unmeasured
confounding.
Instrumental variables, front-door variables, negative controls (proximal
inference) ...
Other times we can bound the causal effects.

Transparency about study goals and the assumptions we make to
justify an analysis are required to discuss bias, refine our questions
and improve our answers.
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Section 27

Unmeasured confounding and instrumental variables

Mats Stensrud Causal Thinking Autumn 2022 330 / 386



We have derived results under identification assumptions,
but what do we do when these assumptions are violated?

We have relied on the key assumptions that we have:

measured a sufficient set of variables to adjust for confounding, and
we have avoided selection bias.

If these assumptions are incorrect, our estimation strategies will yield
bias.

Now we will discuss alternative strategies that can validly estimate
causal effects under an alternative set of assumptions that do not
require that our conventional exchangeability conditions hold.

Our first example is instrumental variable (IV) methods.

Instrumental variables are very popular in economics and the social
sciences. Angrist, Imbens and Card were awarded the 2021 Nobel
medal in Economics for their work on instrumental variables.
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Definition of IVs

Definition (Main IV assumptions)

1 cor(Z ,A) ̸= 0 (instrument strength)

2 Y z,a = Y a for all a, z (exclusion restriction)

3 Z ⊥⊥ Y a for all a (unconfoundedness of Z )

The main IV assumptions are not themselves sufficient to identify the
average effect of A on Y ; thus, we need additional assumptions, and
people have suggested several different ones; these different
conditions are often called homogeneity conditions.

If the unconfoundedness assumption holds, then there are no common
causes of Z and Y in the DAG.
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3 graphs that satisfy the main IV assumptions

Z A

H

Y Z A

H

Y

H0

Z A

H

Y

H0

In the first graph, we have a causal instrument, in the second graph we
have a proxy instrument and the third graph is a combination.
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Example of IV studies

Several studies in economics.

A seminal example is on the effect of education on future earnings by
Joshua D Angrist and Alan B Krueger. “Estimating the payoff to
schooling using the Vietnam-era draft lottery”. In: NBER working
paper w4067 (1992);
It seems very difficult to adjust for common causes of education and
future earnings, but the authors used the result of a lottery that
determined priority for the US military during the Vietnam war.

Randomised controlled trials when treatment is blinded.

Some non-blinded studies. For example, American economist gave families
vouchers Z to reduce the costs from moving from a neighbourhood with
high poverty to a neighbourhood with low poverty. A denotes moving. Y is
psychological stress.

Mendelian Randomization

A genetic variant Z that is associated with treatment A and is not
associated with the outcome Y . outside of A.

Applied researchers use them in a range of other settings too.
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More on examples

In our smoking cessation study: The price of cigarettes in the
population could be an instrument if:

Cigarette price affects the decision to quit smoking,
cigarette price affects weight change only through its effect on smoking
cessation, and
no common causes of cigarette price and weight change exist.

Hernan and Robins, Causal inference: What if?
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Additional IV assumptions: linear structural equation
model

Suppose that the structural equation for Y is linear,

Definition (Linear SEM)

Y = fy (A,H, ϵY ) = βA+ g(H, ϵY ).

Clearly, this linear structure is stronger than what we have previously imposed
when we have done identification (think about all the things we did on
non-parametric structural equations, DAGs and SWIGs).
However, some disciplines have almost only considered linear models. And there
is a lot of disagreement about whether these assumptions are justified.
We will leave these issues aside for a moment (but we will get back to them), and
notice that if follows from the linear SEM that

Y a′ − Y a = β(a′ − a).
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IV theorem

Theorem (IV theorem 1)

If cor(Z ,A) ̸= 0, E(Y a=0 | Z ) = E(Y a=0), and the linear SEM hold, then

ψ ≡ cov(Y ,Z )

cov(A,Z )
= β

The first two assumptions are implied by the main IV assumptions
We will call ψ the IV functional.
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Proof of IV theorem 1

Proof.
Under the linear SEM,

Y − Y a=0 = βA+ g(H, ϵY )− g(H, ϵY ) = βA, i.e. Y − βA = Y a=0

Thus, E(Y − βA | Z ) = E(Y a=0 | Z ) = E(Y a=0), that is, E(Y − βA | Z ) is
independent of Z . Thus,

E[{Z − E(Z )}(Y − βA)]
=E[{Z − E(Z )}E{(Y − βA) | Z}] iterative expectation

=E[{Z − E(Z )}E{Y − βA}] the independence above

=E{Z − E(Z )}E{Y − βA}, the independence above

=0,

and therefore cov(Y − βA,Z ) = 0 (you’ll see this by using the definition of
covariance), and 0 = cov(Y − βA,Z ) = cov(Y ,Z )− βcov(A,Z ).
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An intuitive interpretation

In the ”causal instrument” graph, the IV functional has an intuitive
interpretation:

Consider the coefficient of the population least squares of a
dependent variable W on (1,Z ). This coefficient say βWZ , is indeed

βWZ = cov(W ,Z)
var(Z) .

That is, we can think about βWZ as the limit in probability of the least
squares coefficient in the regression model E(W | Z ;α, β) = α+ βZ .
By dividing the definition of ψ by var(Z ) in the numerator and
denominator it follows that

ψ =
βYZ
βAZ

.

If the instrument Z ∈ {0, 1} then

ψ =
E(Y | Z = 1)− E(Y | Z = 0)

E(A | Z = 1)− E(A | Z = 0)
,

in words, the average additive effect of Z on Y divided by average
effect of Z on A in our IV graph.
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The problem with the linear SEM

The linear SEM is a very strong restriction. Essentially, we are saying
that all individuals have the same effect of the treatment, which is
very unlikely.

In fact, the key idea of ”personalised medicine” is that different people
respond different to treatments.
In the smoking cessation example, this assumption would only hold if
smoking cessation made every individual in the population gain (or
lose) the same amount of body weight!

In the homework you will show that ψ has a causal interpretation
even under a relaxation of the linear SEM assumption, where

Y = fy (A,H, ϵY ) = h(ϵY )A+ g(H, ϵY ),

where h and g are unspecified functions. However, now we’ve made
the strong assumption that H does not modify the causal effect of A
(on the additive scale) because h does not have H as argument.
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A further relaxation (we will not study this one in detail)

Definition (Robins’s IV assumptions)

1 cor(Z ,A) ̸= 0 (instrument strength) (as before)

2 Y z,a = Y a for all a, z (exclusion restriction) (as before)

3 Z ⊥⊥ Y a=0 (unconfoundedness of Z ) (Slightly weaker)

4 There exists a β such that

E(Y | Z ,A)− E(Y a=0 | Z ,A) = βA
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On Robins’s IV assumptions

Theorem

Under Robins’s IV assumptions, β = ψ

Proof.

Using assumption 4,

E(Y − βA | Z ,A) = E(Y a=0 | Z ,A),

and thus we integrate out A,

E(Y − βA | Z ) = E(Y a=0 | Z ),

and follow the steps in the proof of the first theorem on IVs.
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*Robins’s IV assumptions (continuation)

The last assumption is an example of a so-called structural nested model,

E(Y | Z ,A)− E(Y a=0 | Z ,A) = h(A,Z ;β)

satisfying h(0,Z ;β) = 0 for all β.

The model from the previous slide does not assume effect homogeneity, but
it does (only) assume no effect modification by Z on the additive scale.

However, β does not (without extra assumptions) have the interpretation as
the average (additive) treatment effect, but when A is binary it quantifies an
average treatment effect of the treated (use consistency to prove this),

E(Y a=1 | Z ,A = 1)− E(Y a=0 | Z ,A = 1) = E(Y a=1 − Y a=0 | A = 1) = β.

Does this model generalize the linear structural equation model? Yes.
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But is it a plausible assumption that we can reason about?

How can a scientist (or other expert) argue in support of a constant average
causal effect within levels of the proposed instrument Z and the treatment A
in any particular study? Hernan and Robins, Causal inference: What if?

Yet another possibility is to assume that, for any level of the unmeasured
variable H, the effect of A on Y is the same, i.e.

E(Y a=1 | H)− E(Y a=0 | H) = E(Y a=1)− E(Y a=0),

but this assumption is not plausible either because the unmeasured variables
can often be effect modifiers.

For example, weight gain after smoking cessation can vary with prior
intensity of smoking, which may itself be an unmeasured confounder
for the effect of smoking cessation on weight gain.45

45Hernan and Robins, Causal inference: What if?
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Another common alternative

The final criterion we will study is not a criterion about homogeneity.

Definition (Imbens and Angrist’s IV assumptions)

1 cor(Z ,A) ̸= 0 (valid instrument)

2 Y z,a = Y a for all a, z (exclusion restriction)

3 Z ⊥⊥ Y a and Z ⊥⊥ Az (strong unconfoundedness of Z )

4 Az=1 ≥ Az=0 (Monotonicity)

These assumptions are often used in practice

Note that the 3rd assumption is violated in two of our example graphs

The 4th assumption is strong but sometimes plausible. I will give some
intuition why.
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Intuition (Robins)

We can only can estimate the effect of treatment on those whose behavior
was actually affected by the instrument, so Compliers and Defiers are the
only relevant sets. If we have both, then we get mixed up. If there are
only Compliers, things work out OK
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More on monotonicity

Suppose Z ,A ∈ {0, 1}. Then we can divide the population into 4 mutually
exclusive groups

(Az=1 = 0,Az=0 = 0), the never-takers

(Az=1 = 1,Az=0 = 1), the always-takers

(Az=1 = 0,Az=0 = 1), the defiers

(Az=1 = 1,Az=0 = 0), the compliers

Monotonicity assumes no defiers in the entire population. That is, nobody does
exactly the opposite of what they are told to do.

Definition (Local Average Treatment Effect)

The local average treatment effect in stratum Az=1 = a,Az=0 = a′

LATE = E(Y a=1 − Y a=0 | Az=1 = a,Az=0 = a′)

In particular, the complier average treatment effect is

CACE = E(Y a=1 − Y a=0 | Az=1 = 1,Az=0 = 0)

Mats Stensrud Causal Thinking Autumn 2022 347 / 386



Monotonicity example

As a simplified example, consider a physician who generally prefers
Treatment A, but prescribes Treatment B for more physically active
patients (e.g., because Treatment A is associated with risk of motor-skill
impairment), and another physician who generally prefers Treatment B,
but makes exceptions for patients with a family history of diabetes (e.g.,
because a new study suggests such patients might respond better to
Treatment A). Any physically active patient with a family history of
diabetes who could potentially have seen either of these providers would
“defy” both preferences and thus violate the monotonicity assumption
Sonja A Swanson et al. “Definition and evaluation of the monotonicity
condition for preference-based instruments”. In: Epidemiology
(Cambridge, Mass.) 26.3 (2015), p. 414

Mats Stensrud Causal Thinking Autumn 2022 348 / 386



Returning to our smoking example

the compliers are those who would quit smoking when the high cigarette
price is high and who would not quit smoking when the cigarette price is
low. Conversely, the defiers are those who would not quit smoking when the
high cigarette price is high and who would quit smoking when the cigarette
price is low.46

46Hernan and Robins, Causal inference: What if?
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Result on Imbens and Angrist’s IV

Theorem

Under conditions 1-4 of Angrist and Imbens,

CACE = ψ
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*Proof of Angrist and Imbens

Proof.

Y z=1 − Y z=0

= Y z=1,Az=1

− Y z=0,Az=0

consistency

= Y Az=1

− Y Az=0

exclusion restriction

= (Y a=1 − Y a=0)Az=1 + Y a=0 − {(Y a=1 − Y a=0)Az=0 + Y a=0} consistency
= (Y a=1 − Y a=0)(Az=1 − Az=0)

Note that because Az=1 ≥ Az=0, (Az=1 − Az=0) ∈ {0, 1}. Thus,

E(Y z=1 − Y z=0) = E[(Y a=1 − Y a=0)(Az=1 − Az=0)]

= E[(Y a=1 − Y a=0) | Az=1 − Az=0 = 1]P(Az=1 − Az=0 = 1)

= E[(Y a=1 − Y a=0) | Az=1 > Az=0]P(Az=1 > Az=0).

Thus, E[(Y a=1 − Y a=0) | Az=1 > Az=0] = E(Y z=1−Y z=0)
P(Az=1>Az=0) .
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*Proof of Angrist and Imbens

Proof.
Furthermore, by assumption 3,

E(Y z=1 − Y z=0) = E(Y | Z = 1)− E(Y | Z = 0)

and

P(Az=1 > Az=0) = P(Az=1 = 1,Az=0 = 0)

= P(Az=1 = 1)− P(Az=1 = 1,Az=0 = 1) law of total probability

= P(Az=1 = 1)− P(Az=0 = 1) monotonicity

= P(A = 1 | Z = 1)− P(A = 1 | Z = 0) assumption 3 and consist.

Thus,

E[(Y a=1 − Y a=0) | Az=1 > Az=0] =
E(Y z=1 = Y z=0)

P(Az=1 > Az=0)

=
E(Y | Z = 1)− E(Y | Z = 0)

P(A = 1 | Z = 1)− P(A = 1 | Z = 0)
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IV estimation

”IV estimation requires modeling assumptions (such as monotonicity) even
if infinite data were available. This is not the case for previous methods
like IP weighting or standardization: If we had treatment, outcome, and
confounder data from all individuals in the superpopulation”47.

47Hernan and Robins, Causal inference: What if?
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The monotonicity assumption was considered to be a
salvation, but...

Hard to use the complier average treatment effect by decision makers,
because it only tells us something about a subset of the population.
Suppose, for example, 10% of the population are compliers. Then,

can we justify to make recommendations based on the CATE to
everyone in the population?
Unfortunately, we cannot observe the compliers, so we cannot target
the intervention to the compliers.
What is the right thing to do if the treatment is not beneficial in
always-takers and never-takers?
I agree with Hernan & Robins that it is often better to be more honest
and accept that ”interest in this estimand is not the result of its
practical relevance, but rather of the (often erroneous) perception that
it is easy to identify...”
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Angus Deaton

”This goes beyond the old story of looking for an object where the light is
strong enough to see; rather, we have control over the light, but choose to
let it fall where it may and then proclaim that whatever it illuminates is
what we were looking for all along.”
Angus Deaton
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In practice

”Second, relatively minor violations of conditions (i)-(iv) for IV
estimation may result in large biases of unpredictable or
counterintuitive direction. The foundation of IV estimation is that the
denominator blows up the numerator. Therefore, when the conditions
do not hold perfectly or the instrument is weak, there is potential for
explosive bias in either direction.”

”As a result, an IV estimate may often be more biased than an
unadjusted estimate. In contrast, previous methods tend to result in
slightly biased estimates when their identifiability conditions are only
slightly violated, and adjustment is less likely to introduce a large
bias. The exquisite sensitivity of IV estimates to departures from its
identifiability conditions makes the method especially dangerous”

Hernan and Robins, Causal inference: What if?
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More positively

”IV estimation is better reserved for settings with lots of unmeasured
confounding, a truly dichotomous and time-fixed treatment A, a
strong and causal proposed instrument Z , and in which either effect
homogeneity is expected to hold, or one is genuinely interested in the
effect in the compliers and monotonicity is expected to hold.”48

Causal inference relies on transparency of assumptions and results
from analyses that rely on different assumptions. In that sense, IV is
an attractive approach because it depends on a different set of
assumptions than other methods.

48Hernan and Robins, Causal inference: What if?
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Plan for the last lecture

Some more on IVs

Bounds

Sensitivity analysis
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Section 28

IV inequalities
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Motivation: IV inequalities

Theorem (IV inequalities)

Suppose Z ⊥⊥ Y a, positivity and consistency hold. Then,

P[Y = 0,A = 0 | Z = 0] + P[Y = 1,A = 0 | Z = 1] ≤ 1;

P[Y = 0,A = 1 | Z = 0] + P[Y = 1,A = 1 | Z = 1] ≤ 1;

P[Y = 1,A = 0 | Z = 0] + P[Y = 0,A = 0 | Z = 1] ≤ 1;

P[Y = 1,A = 1 | Z = 0] + P[Y = 0,A = 1 | Z = 1] ≤ 1.

The idea is that the instrumental variable assumptions put constraints on
the joint law p(y , a, z). This is interesting, because , in principle, we can
use these logical bounds to use evaluate the IV assumptions: we can derive
a test of whether the IV assumption Z ⊥⊥ Y a holds. If any of the above
inequalities fail, then the core conditions must be violated; however, it is
possible that the core IV conditions are violated without failing the
inequalities.
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Cont

Proof.

For i , j , k ∈ {0, 1},

P[Y a=i = j ]

= P[Y a=i = j | Z = k] bc. (Z ⊥⊥ Y a)

= P[Y a=i = j ,A = i | Z = k] + P[Y a=i = j ,A = 1− i | Z = k] laws of prob.

= P[Y = j ,A = i | Z = k] + P[Y a=i = j ,A = 1− i | Z = k] const.

≤ P[Y = j ,A = i | Z = k] + P[A = 1− i | Z = k]

= 1− P[Y = 1− j ,A = i | Z = k];

Thus

max
k

P[Y = 1,A = i | Z = k] ≤ P[Y a=i = 1]

≤min
k∗

1− P[Y = 0,X = i | Z = k∗],

where the lower bounds follows by taking j = 0 in the exp. for P[Y a=i = j ]
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According to Pearl

”The instrumental inequality can be used in the detection of undesirable
side- effects. Violations of this inequality can be attributed to one of two
possibilities: either there is a direct causal effect of the assignment (Z ) on
the response (Y ), unmediated by the treatment (A), or there is a
common causal factor influencing both variables. If the assignment is
carefully randomized, then the latter possibility is ruled out and any
violation of the instrumental inequality (even un- der conditions of
imperfect compliance) can safely be attributed to some direct influence of
the assignment process on subjects’ response (e.g., psychological aversion
to being treated). Alternatively, if one can rule out any direct effects of Z
on Y , say through effective use of a placebo, then any observed violation
of the instrumental inequality can safely be attributed to spurious
dependence between Z and Y, namely, to selection bias.
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Section 29

Motivation for bounds
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Bounds

Motivation: Can we derive partial identification results (i.e. bounds)
under weaker assumptions (than those imposed so far)?

Anyway are bounds useful? I think the answer is yes.
The following text is from Robins and Greenland:

”Some argue against reporting bounds for nonidentifiable parameters,
because bounds are often so wide as to be useless for making public
health decisions.
But we view the latter problem as a reason for reporting bounds in
conjunction with other analyses: Wide bounds make clear that the
degree to which public health decisions are dependent on merging the
data with strong prior beliefs.
Even when the ITT49 null hypothesis of equality of treatment
arm-specific means is rejected, the bounds may appropriately include
zero. If treatment benefits some subjects and harms others, the ATE
parameter may be zero even though both the sharp and ITT null
hypotheses are false

49say, the effect of Z in our considerations
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According to Pearl

When conditions for identification are not met, the best one can do is
derive bounds for the quantities of interest—namely, a range of possible
values that represents our ignorance about the data-generating process
and that cannot be improved with increasing sample size.
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Bounds on the ATE

E[Y 1 − Y 0] = E[Y 1]− E[Y 0] can be decomposed as

1∑
a=0

E
[
Y 1 | A = a

]
P[A = a]−

1∑
a=0

E
[
Y 0 | A = a

]
P[A = a]. (10)

E[Y a | A = a] = E[Y | A = a] by consistency.

E[Y a | A = a] and P[A = a] are identifiable and can be consistently
estimated by their empirical counterparts.

the observed data provide no information about E[Y a | A = 1− a],
such that (10) is only partially identifiable without additional
assumptions (such as exchangeability).
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Bounds on the ATE

E[Y 1 − Y 0] is bounded by smallest and largest possible values for
E[Y a | A = 1− a].

If Y 1 and Y 0 are not bounded then bounds on E[Y 1 − Y 0] will be
ranging from −∞ to ∞.

Informative bounds are only possible if Y 0 and Y 1 are bounded.

Because any bounded variable can be rescaled to take values in the
unit interval, without loss of generality assume Y a ∈ [0, 1] for
a = 0, 1. Then 0 ≤ E[Y a | A = 1− a] ≤ 1 and from (10) it follows
that E[Y 1 − Y 0] is bounded below by setting E[Y 1 | A = 0] = 0 and
E[Y 0 | A = 1] = 1, which yields the lower bound

E
[
Y 1 | A = 1

]
P[A = 1]− E

[
Y 0 | A = 0

]
P[A = 0]− P[A = 1].

Similarly, E[Y 1 − Y 0] is bounded above by setting E[Y 1 | A = 0] = 1
and E[Y 0 | A = 1] = 0, which yields the upper bound

E
[
Y 1 | A = 1

]
P[A = 1]− E

[
Y 0 | A = 0

]
P[A = 0] + P[A = 0].
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Width of bounds

Determining treatment effect bounds can be viewed as a constrained
optimization problem. The assumptions we make, for example
exchangeabilities, determine the constraints.

The bounds from the previous slide have width 1 and are contained in
[−1, 1], and are called the Manski-Robins bounds.
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Motivating example 2: bounds

We will consider a setting where Z ,A,Y are all binary. This could for
example be plausible in a randomized controlled trial, where

Z is treatment assignment
A is the treatment taken
Y is the outcome

In our motivation, we will assume no defiers (suppose the treatment is
only available among those with Z = 1). However, importantly, we
will relax this assumption; let’s think about an RCT with one-sided
compliance.

What do we know about the average treatment effect?

We will explore this (and build some intuition) in the next slides.
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Motivating example 2 (cont.): always-takers

Suppose monotonicitiy (no defiers).

Then we can simply identify always-takers by Az=0 = 1.
The fraction of always-takers is P(A = 1 | Z = 0)
E(Y a=1 | A = 1,Z = 0) = E(Y | A = 1,Z = 0)
= E(Y | Az=0 = 1,Az=1 = 1).
E(Y a=1 − Y a=0 | A = 1,Z = 0) ≤ E(Y | A = 1,Z = 0)
with equality when all always-takers have Y a=0 = 0.
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Motivating example 2 (cont.): never-takers

Suppose monotonicitiy (no defiers).

Then we can simply identify never-takers by Az=1 = 0.
The fraction of never-takers is P(A = 0 | Z = 1)
E(Y a=0 | A = 0,Z = 1) = E(Y | A = 0,Z = 1) = E(Y | Az=0 =
0,Az=1 = 0).
E(Y a=1 − Y a=0 | A = 0,Z = 1) ≤ 1− E(Y a=0 | A = 0,Z = 1)
with equality when all never-takers have Y a=1 = 1.
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Suppose no effect in compliers

Combine the simple results from the two previous slides to gain some
insight:

Suppose monotonicitiy (no defiers).

Suppose no effect in compliers =⇒ E(Y z=1 = Y z=0) = 0, in other
words no intention to treat effect (ITT). Think about it, if it isn’t clear!
Then the maximum possilbe effect of actually taking treatment is

E(Y a=1 − Y a=0)

≤E(Y a=1 | A = 1,Z = 0)P(A = 1 | Z = 0)

+ [1− E(Y a=0 | A = 0,Z = 1)]P(A = 0 | Z = 1),

even if the intention to treat (ITT) effect E(Y z=1 = Y z=0) = 0.
Thus, even if the ITT effect is zero, there could a be considerable
causal effects of taking treatment. In other words, even if the ITT is
null, the ATE can be nonzero, which seriously complicate the
interpretation of hypothesis tests of the ITT in settings with (a
substantial amount of) noncompliance.
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Section 30

Bounds and decision making
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Bounds on conditional average treatment effects and
optimal decisions

When E(Y a | L = l) is point identified, we simply identify the optimal rule

gopt(l) ≡ argmax
a∈{0,1}

E(Y a | L = l).

When E(Y a | L = l) partially identified, then

La(l) ≤E(Y a | L = l) ≤ Ua(l), a = 0, 1,

L(l) ≤E(Y 1 − Y 0 | L = l) ≤ U(l),

where L(l) = L1(l)− U0(l) and U(l) = U1(l)− L0(l).
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Are bounds uninformative?

Bounds are often considered ”uninformative” when

L(l) ≤ 0 ≤ U(l),

that is, when the sign of E(Y 1 − Y 0 | L = l) is unidentified.

But there exist formal decision theory results...
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*Consider a generalized lower bound on the E(Y a | L = l)

Let g : L → {0, 1} be a treatment rule (dynamic wrt. to the covariate l ∈ L),
that is a function which assigns treatment.

Define the ”bounds optimal rule”:

gbopt(l)

= argmax
a∈{0,1}

[
{1− w(l)}

{
L(l)a+ L0(l)

}
+ w(l)

{
−U(l)(1− a) + L1(l)

}]
,

where 0 ≤ w(l) ≤ 1 for all l . This is maximisation of a lower bound in the
following sense:

Lemma

For a decision rule g(l),

hg (l)

:=
[
{1− w(l)}

{
L(l)I (g(l) = 1) + L0(l)

}
+ w(l)

{
−U(l)I (g(l) = 0) + L1(l)

}]
≤ E(Y g | L = l).
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*Proof of gbopt being a lower bound (previous slides)

Proof.

Let g : L → {0, 1} be a decision rule.

E(Y g | L = l)

= E(Y a=1 | L = l)I (g(l) = 1) + E(Y a=0 | L = l)I (g(l) = 0)

= E(Y a=1 − Y a=0 | L = l)I (g(l) = 1) + E(Y a=0 | L = l)

= E(Y a=0 − Y a=1 | L = l)I (g(l) = 0) + E(Y a=1 | L = l)

Because La(l) ≤ E(Y a | L = l) ≤ Ua(l), a = 0, 1, and we can use these bounds
to find that

{1− w(l)}
{
L(l)I (g(l) = 1) + L0(l)

}
+ w(l)

{
−U(l)I (g(l) = 0) + L1(l)

}
≤ L1(l)I (g(l) = 1) + L0(l)I (g(l) = 0) ≤ E(Y g | L = l),

where 0 ≤ w(l) ≤ 1 for all l ∈ L.
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Classical decision criteria

Classical criteria are special cases of gbopt, for example

Minimax regret (Opportunist) ming max[E(Y gopt)− E(Y g )].
(w(l) = 0.5 ∀l)
Healthcare decision-making. maxg E{E(Y 0 | L) + L(L)g(L)}
(w(l) = 0 ∀l)
Maximax utility (Optimist) maxg maxE(Y g ).

Maximin utility (Pessimist) maxg minE(Y g ).
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*Features of the bounds

If E(Y a | L = l), a = 0, 1 is point identified, then gbopt = gopt.

If there is no uncertainty about the optimal decision, that is
0 /∈ (L(l),U(l)), then gbopt = gopt regardless of the choice of w(l).
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Section 31

Sensitivity analysis
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Sensitivity analysis

”Over recent decades recognition has grown that the conventional
statistical models used to analyze epidemiological data cannot be
reasonably claimed to be correct in the way most textbooks treat them to
be. In particular, conventional models for epidemiological data-generating
processes cannot be credibly taken to represent targets of primary
scientific interest.” This is a quote form Sander Greenland.

Also called bias analysis.

Different from bounds: bounds are derived under minimal
assumptions, whereas sensitivity analysis rely on assumptions that the
investigator find plausible (but the notion of plausibility is
subjective...).

In some sense, bounds are therefore more desirable as they rely on
less (subjective) assumptions, but they are often wide.
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Motivation

Intuition for sensitivity analysis: We want to evaluate how strong the
unmeasured confounder would have to be associated with the
treatment and outcome for the treatment-outcome association not to
be causal.

The data themselves, however, do not give an indication whether
there is no unmeasured confounding.

Thus, we study how robust the estimated associations are to potential
unmeasured or uncontrolled confounding.

Thus, a sensitivity analysis usually suggests the existence of an
unmeasured confounder H and introduces a model where either the
H-A association or the H-A association or both.

Is this a science or an art?
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Sensitivity analysis: example of a strategy

Motivation

Suppose that we study a binary treatment A. Then, using law of total
expectation and consistency (no exchangeability here),

E(Y a)

= E[E(Y a | L)]
= E[E(Y | A = a, L)π(a, L)] + E[E(Y a | A = 1− a, L)π(1− a, L)],

which is the same argument as in Slide 366.

The only counterfactual is the right hand term. If Y a ⊥⊥ A | L, we have that

E(Y a | A = 1− a, L = l) = E(Y a | A = a, L = l) = E(Y | A = a, L = l),

for all l .
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Example continues

However, if Y a ⊥̸⊥ A | L, we cannot use the argument above, but we could
specify a sensitivity parameter δa(l) as

δa(l) = E(Y a | A = 1, L = l)− E(Y a | A = 0, L = l),

which clearly is 0 if Y a ⊥⊥ A | L.
A simple example of a sensitivity function is

δa(l) = γaa.

If γa is positive, this function would say that individuals who received a
would have higher risk of the outcome Y , even when adjusting for L.
For example there could be an unmeasured (hidden) variable A← H → Y .

In practice, we could do a sensitivity analysis by choosing a large number of
values for γa.

Then, when δa(l) is specified, we can identify E(Y a) (next slide exercise)
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Exercises to the sensitivity analysis

We can use δa(l) for identification. To see this, suppose a = 1, use
consistency,

δ1(l) = E(Y | A = 1, L = l)− E(Y 1 | A = 0, L = l),

and using the form of δ1(l) we have

E(Y 1) = E[E(Y | A = 1, L)π(1, L)]

+ E[{E(Y | A = 1, L)− δ1(L)}π(0, L)]

Indeed, it can be shown that δa(l) puts no restrictions on the observed data
law p(y , a, l).
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Different approaches to sensitivity analysis

In the spirit of Cornfield (1959), specify how a collection of unmeasured
variables H affects the outcome of interest Y and how H affects A.

In the suggested approach above we only specified a single relation, that is,
a mean counterfactual outcome conditional on L:

We used few (in our simple example one) sensitivity parameter
We were agnostic about the structure of the hidden confounders H (i.e.
whether they are binary, continuous, etc etc).

On the other hand, Conrfield-like approaches can be useful when

H is a known confounder (say, smoking) that was not measured in the
study
We somehow have reasons to know the association between H and the
outcome and the treatment.
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